2-5 SUMMARY 51
FIGURE 2-14 The page Page tabie 0
directory, page table 0, 00003FFC | 0003F003
and two memory pages.
Note how the address of 00003FF8 | 0003E003
page 000C8000-000C9000 00003FF4 | 0003D003 00110FFF
has been moved to 00003FF0 0003C003 00110FFE
00110000—-00110FFF.
00003328 | 00112003 M
00003324 00111003
00003320 00110003 00110002
,.-\'_i\ 00110001
—'\‘\———.
00110000
00003008 00002003 Page 000C8
00003004 00001003 00000FFF
00003000 | 00000003 0000OFFE
R e P
~]
0000200C
00002008 00000002
00002004 00000001
00002000 00003003 00000000
Page directory Page 00000H

the Pentium and Pentium Pro microprocessors, pages can be either 4K bytes in length or 4M bytes in length.
Although no software currently supports the 4M-byte pages, as the Pentium 4 and more advanced versions pervade
the personal computer, operating systems of the future will undoubtedly begin to support 4M-byte memory pages.

2-5 SUMMARY

1. The programming model of the 8086 through 80286 contains 8- and 16-bit registers. The programming model

of the 80386 and above contains 8-, 16-, and 32-bit extended registers as well as two additional 16-bit seg-
ment registers: FS and GS.

. The 8-bit registers are AH, AL, BH, BL, CH, CL, DH, and DL. The 16-bit registers are AX, BX, CX, DX, SP,
BP, DI, and SI. The segment registers are CS, DS, ES, SS, FS, and GS. The 32-bit extended registers are
EAX, EBX, ECX, EDX, ESP, EBP, EDI, and ESI. In addition, the microprocessor contains an instruction
pointer (IP/EIP) and flag register (FLAGS or EFLAGS).

. All real mode memory addresses are a combination of a segment address plus an offset address. The starting
location of a segment is defined by the 16-bit number in the segment register that is appended with a hexa-
decimal zero at its rightmost end. The offset address is a 16-bit number added to the 20-bit segment address to
form the real mode memory address.

- All instructions (code) are accessed by the combination of CS (segment address) plus IP or EIP (offset
address).

92

10.

11.

12.

CHAPTER 2 THE MICROPROCESSOR AND ITS ARCHITEGTURE

. Data are normally referenced through a combination of the DS (data segment), and either an offset address or

the contents of a register that contains the offset address. The 8086 through the Pentium 4 use BX, DI, and SI
as default offset registers for data if 16-bit registers are selected. The 80386 and above can use the 32-bit reg-
isters EAX, EBX, ECX, EDX, EDI, and ESI as default offset registers for data.

. Protected mode operation allows memory above the first 1M byte to be accessed by the 80286 through the

Pentium 4 microprocessors. This extended memory system (XMS) is accessed via a segment address plus an
offset address, just as in the real mode. The difference is that the segment address is not held in the segment
register. In the protected mode, the segment starting address is stored in a descriptor that is selected by the
segment register.

. A protected mode descriptor contains a base address, limit, and access rights byte. The base address locates

the starting address of the memory segment; the limit defines the last location of the segment. The access
rights byte defines how the memory segment is accessed via a program. The 80286 microprocessor allows a
memory segment to start at any of its 16M bytes of memory using a 24-bit base address. The 80386 and above
allow a memory segment to begin at any of its 4G bytes of memory using a 32-bit base address. The limit is a
16-bit number in the 80286 and a 20-bit number in the 80386 and above. This allows an 80286 memory seg-
ment limit of 64K bytes, and an 80386 and above memory segment limit of either 1M bytes (G = 0) or 4G
bytes (G=1).

The segment register contains three fields of information in the protected mode. The leftmost 13 bits of the
segment register address one of 8192 descriptors from a descriptor table. The TI bit accesses either the global
descriptor table (TI = 0) or the local descriptor table (TI = 1). The rightmost 2 bits of the segment register se-
lect the requested priority level for the memory segment access.

The program-invisible registers are used by the 80286 and above to access the descriptor tables. Each segment
register contains a cache portion that is used in protected mode to hold the base address, limit, and access
rights acquired from a descriptor. The cache allows the microprocessor to access the memory segment
without again referring to the descriptor table until the segment register’s contents are changed.

A memory page is 4K bytes in length. The linear address, as generated by a program, can be mapped to any
physical address through the paging mechanism found within the 80386 through the Pentium 4
MiCroprocessor.

Memory paging is accomplished through control registers CRO and CR3. The PG bit of CRO enables paging
and the contents of CR3 addresses the page directory. The page directory contains up to 1024 page table ad-
dresses that are used to access paging tables. The page table contains 1024 entries that locate the physical ad-
dress of a 4K-byte memory page. .

The TLB (translation look-aside buffer) caches the 32 most recent page table translations. This precludes page
table translation if the translation resides in the TLB, speeding the execution of software.

2-6 QUESTIONS AND PROBLEMS

Ealb ol e

—

SwvwNow

. What are program-visible registers?
. The 80286 addresses registers that are 8- and - bits wide.

The extended registers are addressable by which microprocessors?
The extended BX register is addressed as

. Which register holds a count for some instructions?

What is the purpose of the IP/EIP register?
The carry flag bit is set by which arithmetic operations?
Will an overflow occur if a signed FFH is added to a signed 01H?

. A number that contains 3 one bits is said to have parity.
. Which flag bit controls the INTR pin on the microprocessor?

2-6
11.

12.
13.

14.

15.
16.

17.
18.

19.
20.

2L

22.

23.

24.
25.
26.
217.

28.

29.

30.
3L
32.

QUESTIONS AND PROBLEMS 53

Which microprocessors contain an FS segment register?

What is the purpose of a segment register in the real mode operation of the mlcroprocessor"

In the real mode, show the starting and ending addresses of each segment located by the followmg segment
register values:

(a) 1000H

(b) 1234H

(c) 2300H

(d) EOO0OH

(¢) ABOOH

Find the memory address of the next instruction executed by the microprocessor, when operated in the real
mode, for the following CS:IP combinations:

(a) CS =1000H and IP = 2000H

(b) CS =2000H and IP = 1000H

(¢) CS=2300H and IP = 1A00H

(d) CS=1A00H and IP = BOOOH

.(¢) CS =3456H and IP = ABCDH

Real mode memory addresses allow access to memory below which memory address?

Which register or registers are used as an offset address for string instruction destinations in the micro-
processor?

Which 32-bit register or registers are used as an offset address for data segment data in the Pentium 4 micro-
processor?

The stack memory is addressed by a combination of the segment plus offset.

If the base pointer (BP) addresses memory, the segment contains the data.

Determine the memory location addressed by the following real mode 80286 register combinations:

(a) DS = 1000H and DI = 2000H

(b) DS =2000H and SI = 1002H

(¢) SS =2300H and BP = 3200H

(d) DS = AOOOH and BX = 1000H

(e) SS =2900H and SP = 3A00H

Determine the memory location addressed by the following real mode Pentium 4 register combinations:

(a) DS =2000H and EAX = 00003000H

(b) DS =1A00H and ECX = 00002000H

(¢c) DS = CO00H and ESI = 0000A000H

(d) SS = 8000H and ESP = 00009000H

(e) DS =1239H and EDX = 0000A900H

Protected mode memory addressing allows access to which area of the memory in the 80286 microprocessor?
Protected mode memory addressing allows access to which area of the memory in the Pentium 4
microprocessor?

What is the purpose of the segment register in protected mode memory addressing?

How many descriptors are accessible in the global descriptor table in the protected mode?

For an 80286 descriptor that contains a base address of AOOOOOH and a limit of 1000H, what starting and
ending locations are addressed by this descriptor?

For an 80486 descriptor that contains a base address of 01000000H, a limit of OFFFFH, and G = 0, what
starting and ending locations are addressed by this descriptor?

For a Pentium 4 descriptor that contains a base address of 00280000H, a limit of 00010H, and G = 1, what
starting and ending locations are addressed by this descriptor?

If the DS register contains 0020H in a protected mode system, which global descriptor table entry is accessed?
If DS = 0103H in a protected mode system, the requested privilege level is

If DS = 0105H in a protected mode system, which entry, table, and requested privilege level are selected?
What is the maximum length of the global descriptor table in the Pentium 4 microprocessor?

54

33.

34.

3s.
36.
37.

38.
39.
40.
41.

42.
43.
. If the microprocessor sends linear address 00200000H to the paging mechanism, which paging directory entry

45.
46.
47.

CHAPTER 2 THE MICROPROGESSOR AND ITS ARCHITECTURE

Code a descriptor that describes a memory segment that begins at location 210000H and ends at location
21001FH. This memory segment is a code segment that can be read. The descriptor is for an 80286 micro-
procesSor. ' '

Code & descriptor that describes a memory segment that begins at location 03000000H and ends at location
OSFFFFFFH. This memory segment is a data segment that grows upward in the memory system and can be
written. The descriptor is for an 80386 microprocessor.

Which register locates the global descriptor table?

How is the local descriptor table addressed in the memory system?

Describe what happens when a new number is loaded into a segment register when the microprocessor is op-
erated in the protected mode.

What are the program-invisible registers?

What is the purpose of the GDTR?

How many bytes are found in a memory page?

What register is used to enable the paging mechanism in the 80386, 80486, Pentium, Pentium Pro, and Pen-
tium 4 microprocessors?

How many 32-bit addresses are stored in the page directory?

Each entry in the page directory translates how much linear memory into physical memory?

is accessed, and which page table entry is accessed?

What value is placed in the page table to redirect linear address 20000000H~30000000H?

What is the purpose of the TLB located within the 80486 microprocessor?

Using the Internet, write a short report that details the TLB. Hint: You might want to go to the Intel Web site
and search for information.

L3

CHAPTER 3
Addressing Modes Pesmm,:éezglﬁfgiu:fes

ACC No.......0Q02

CALL NO ettt reeee e cnnens

INTRODUCTION

Efficient software development for the microprocessor requires a complete familiarity with the addressing modes
employed by each instruction. In this chapter, the MOV (move data) instruction is used to describe the data-ad-
dressing modes. The MOV instruction transfers bytes or words of data between registers, or between registers and
memory in the 8086 through the 80286 and bytes, words, or doublewords in the 80386 and above. In describing the
program memory-addressing modes, the CALL and JUMP instructions show how to modify the flow of the program.

The data-addressing modes include register, immediate, direct, register indirect, base-plus-index, register rel-
ative, and base relative-plus-index in the 8086 through the 80286 microprocessor. The 80386 and above also in-
clude a scaled-index mode of addressing memory data. The program memory-addressing modes include program
relative, direct, and indirect. The operation of the stack memory is explained so that the PUSH and POP instructions
are understood.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

. Explain the operation of each data-addressing mode.

. Use the data-addressing modes to form assembly language statements.

Explain the operation of each program memory-addressing mode.

Use the program memory-addressing modes to form assembly and machine language statements.
Select the appropriate addressing mode to accomplish a given task.

Detail the difference between addressing memory data using real mode and protected mode operation.
Describe the sequence of events that place data onto the stack or remove data from the stack.

Explain how a data structure is placed in memory and used with software.

©NO YR W~

55

56 CHAPTER 3 ADDRESSING MODES

3-1 DJA;I'A-ﬁADDR{ES_SING MODES
Because the MOV instruction is a commion and flexible instruction, it provides a basis
for the explanation of the data-addressing modes. Figure 3-1 illustrates the MOV in-
struction and defines the direction of data flow. The sourece is to the right and the desti-
nation is to the left, next to the opcode MOV. (An opcode, or operation code, tells the
microprocessor which operation to perform.) This direction of flow, which is applied to
all instructions, is awkward at first. We naturally assume that things move from left to
right, whereas here they move from right to left. Notice that a comma always separates
the destination from the source in an instruction. Also, note that memory-to-memory
transfers are not allowed by any instruction except for the MOVS instruction.

In Figure 3-1, the MOV AX,BX instruction transfers the word contents of the
source register (BX) into the destination register (AX). The source never changes, but
the destination usually changes.! It is essential to remember that a MOV instruction
always copies the source data and into the destination. The MOV never actually picks
up the data and moves it. Also, note that the flag register remains unaffected by most

MOV AX,BX
o Source
Destination

FIGURE 3-1 The
MOV instruction
showing the source,
destination, and
direction of data flow.

data transfer instructions. The source and destination are often called operands.

Figure 3-2 shows all possible variations of the data-addressing modes using the MOV instruction. This illustra-
tion helps to show how each data-addressing mode is formulated with the MOV instruction and also serves as a refer-
ence. Note that these are the same data-addressing modes found with all versions of the Intel microprocessor, except
for the scaled-index-addressing mode, which is found only in the 80386 through the Pentium 4. The data-addressing

modes are as follows:

Register Transfers a copy of a byte or word from the source register or memory location to the

addressing destination register or memory location. (Example: the MOV CX,DX instruction copies
the word-sized contents of register DX into register CX.) In the 80386 and above, a
doubleword can be transferred from the source register or memory location to the desti-
nation register or memory location. (Example: the MOV ECX,EDX instruction copies
the doubleword-sized contents of register EDX into register ECX.)

Immediate Transfers the source-immediate byte or word of data into the destination register or

addressing memory location. (Example: the MOV AL,22H instruction copies a byte-sized 22H into
register AL.) In the 80386 and above, a doubleword of immediate data can be transferred
into a register or memory location. (Example: the MOV EBX,12345678H instruction opies
a doubleword-sized 12345678H into the 32-bit wide EBX register.)

Direct Moves a byte or word between a memory location and a register. The instruction set

addressing does not support a memory-to-memory transfer, except for the MOVS instruction.
(Example: the MOV CX,LIST instruction copies the word-sized contents of memory
location LIST into register CX.) In the 80386 and above, a doubleword-sized memory
location can also be addressed. (Example: the MOV ESLLIST instruction copies a 32-
bit number, stored in four consecutive bytes of memory, from location LIST into
register ESI.)

Register indirect Transfers a byte or word between a register and a memory location addressed by

addressing an index or base register. The index and base registers are BP, BX, DI, and SI.

(Example: the MOV AX,[BX] instruction copies the word-sized data from the data
segment offset address indexed by BX into register AX.) In the 80386 and above, a

1The exceptions are the CMP and TEST instructions, which never change the destination. These instructions are described in later chapters.

57

"sapow Buissaippe-ejep y WNUB4-9808 Z—-€ JHNDIL

HOO0O0! = SA Pue ‘HO0O0} = AVHHY ‘H00Z00000 = IS3 ‘HO0E00000 = Xg3 :SeIoN

DATA-ADDRESSING MODES

3-1

HooZ01 HOO0¥00000 + HOOE00000 + HO000 L v .
el ISIXZ+XEI+HOLXSA =~ | joebey xvlisaxe+xa3l AoOW Xepul pajeos
Hoost 1 H0020 + HOOE0 + HO0O1 + HO0001 xa
eoeu%z ~ IS+X8+AVHHY +HOLXSA =~ | ,asfey Xa‘lis+xglAvday AOW xaput-snjd-aAieje) sseg
1 ¥ + HOOEO0 + HO000 L HPOE0b
Jeisibey * v+xg+Hotxsa wa&v%h [+xgl10 AOW aAyejes Jajsibay
HO0S01 H0020 + HOOE0 + HOO00 98
Tommn | = Istx@+HOLXSA T | gsbey dalis+xal AOW xapui-snd-eseq
HOO0E04 HO0€0 + HO000 | . 10
Lowen |~ Xxa+Hoixsa sarsiBoy 10'xal AOW waupul se)sibey
HYEZLL HY€2L + HO000L -~
wm%%%n ST dSIGFHOEXSA T | esibey Xv[H¥ESL] AOW wanq
HD .
soisibey e HVYE'HD AOW ojeIpawWW|
XV
sersiboy Jembon XE'XY AOW so1siBey
uofjeunsaq uo}eJIaUdY) SSAIPPY asinosg uopodNAsuy adA}

58 CHAPTER 3 ADDRESSING MODES

Base-plus-index
addressing

Register relative
addressing

Base relative-plus-
index addressing

Scaled-index
addressing

byte, word, or double-word is transferred between a register and a memory location
addressed by any register: EAX, EBX, ECX, EDX, EBP, EDI, or ESI. (Example: the
MOV AL,[ECX] instruction loads AL from the data segment offset address selected by
the contents of ECX.)

Transfers a byte or word between a register and the memory location addressed by a
base register (BP or BX) plus an index register (DI or SI). (Example: the MOV
[BX+DI],CL instruction copies the byte-sized contents of register CL into the data
segment memory location addressed by BX plus DL.) In the 80386 and above, any
register EAX, EBX, ECX, EDX, EBP, ED], or ESI may be combined to generate the
memory address. (Example: the MOV [EAX+EBX],CL instruction copies the byte-
sized contents of register CL into the data segment memory location addressed by EAX
plus EBX.)

Moves a byte or word between a register and the memory location addressed by an
index or base register plus a displacement. (Example: MOV AX,[BX+4] or MOV
AX,ARRAY[BX]. The first instruction loads AX from the data segment address formed
by BX plus 4. The second instruction loads AX from the data segment memory location

in ARRAY plus the contents of BX.) The 80386 and above use any register to
address memory. (Example: MOV AX,[ECX+4] or MOV AX,ARRAY[EBX]. The first
instruction loads AX from the data segment address formed by ECX plus 4. The second
instruction loads AX from the data segment memory location ARRAY plus the contents
of EBX.)

Transfers a byte or word between a register and the memory location addressed by a
base and an index register plus a displacement. (Example: MOV AX,ARRAY[BX+DI]
or MOV AX,[BX+DI+4]. These instructions load AX from a data segment memory
location. The first instruction uses an address formed by adding ARRAY, BX, and DI
and the second by adding BX, DI, and 4.) In the 80386 and above, MOV
EAX,ARRAY[EBX+ECX] loads EAX from the data segment memory location
accessed by the sum of ARRAY, EBX, and ECX.

Is available only in the 80386 through the Pentium 4 microprocessor. The second
register of a pair of registers is modified by the scale factor of 2X, 4X, or 8X to
generate the operand memory address. (Example: a MOV EDX,[EAX+4*EBX]
instruction loads EDX from the data segment memory location addressed by EAX plus
4 times EBX.) Scaling allows access to word (2X), doubleword (4X), or quadword 8X)
memory array data. Note that a scaling factor of 1X also exists, but it is normally
implied and does not appear in the instruction. The MOV AL,[EBX+ECX] is an
example in which the scaling factor is a one. Alternately, the instruction can be rewritten
as MOV AL,[EBX+1*ECX]. Another example is a MOV AL,{2*EBX] instruction,
which uses only one scaled register to address memory.

Register Addressing

Register addressing is the most common form of data addressing and, once the register names are learned, is the
easiest to apply. The microprocessor contains the following 8-bit registers used with register addressing: AH, AL,
BH, BL, CH, CL, DH, and DL. Also present are the following 16-bit registers: AX, BX, CX, DX, SP, BP, S, and
DI In the 80386 and above, the extended 32-bit registers are EAX, EBX, ECX, EDX, ESP, EBP, ED], and ESI.
With register addressing, some MOV instructions, and the PUSH and POP instructions, also use the 16-bit seg-
ment registers (CS, ES, DS, SS, FS, and GS). It is important for instructions to use registers that are the same size.
Never mix an 8-bit register with a 16-bit register, an 8-bit register with a 32-bit register, or a 16-bit register with
32-bit register because this is not allowed by the microprocessor and results in an error when assembled. This is

3-1 DATA-ADDRESSING MODES 59

TABLE 3-1 Examples of the register-addressed instructions.

Assembly Language Size Operation
MOV AL,BL 8-bits Copies BL into AL
MOV CH,CL 8-bits - Copies CL into CH
MOV AX,CX 16-bits Copies CX into AX
MOV SP,BP 16-bits Copies BP into SP
MOV DS,AX 16-bits Copies AX into DS
MOV SI,Di 16-bits Copies Dl into Si
MOV BX,ES 16-bits Copies ES into BX
MOV ECX,EBX 32-bits Copies EBX into ECX
MOV ESP,EDX 32-bits Copies EDX into ESP
MOV ES,DS — Not allowed (segment-to-segment)
MOV BL,DX — Not allowed (mixed sizes)
MOV CS,AX — Not aliowed (the code segment register

may not be the destination register)

even true when a MOV AX,AL or a MOV EAX,AL instruction may seem to make sense. Of course, the MOV
AX,AL or MOV EAX,AL instruction is not allowed because these registers are of different sizes. Note that a few
instructions, such as SHL DX,CL, are exceptions to this rule, as indicated in later chapters. It is also important to
note that none of the MOV instructions affect the flag bits.

Table 3-1 shows many variations of register move instructions. It is impossible to show all combinations
because there are too many. For example, just the 8-bit subset of the MOV instruction has 64 different variations.
A segment-to-segment register MOV instruction is about the only type of register MOV instruction not allowed.
Note that the code segment register is not normally changed by a MOV instruction because the address of the next
instruction is found in both IP/EIP and CS. If only CS were changed, the address of the next instruction would be
unpredictable. Therefore, changing the CS register with a MOV instruction is not allowed.

Figure 3-3 shows the operation of the MOV BX,CX instruction. Note that the source register’s contents do
not change, but the destination register’s contents do change. The instruction moves (copies) a 1234H from
register CX into register BX. This erases the old contents (76AFH) of register BX, but the contents of CX remain
unchanged. The contents of the destination register or destination memory location change for all instructions

Register array
EAX
EBX 2 23 4 7 6 A F
ECX 11 AC 1 2 3 4 1. .23 4

FIGURE 3-3 The effect of executing the MOV BX, CX instruction at the
point just before the BX register changes. Note that only the rightmost 16
bits of register EBX change.

60 CHAPTER3 ADDRESSING MODES

except the CMP and TEST instructions. Note that the MOV BX,CX instruction does not affect the leftmost 16 bits
of register EBX.

Example 3-1 shows a sequence of assembled instructions that copy various data between 8-, 16-, and 32-bit reg-
isters. As mentioned, the act of moving data from one register to another only changes the destination register, never the
source. The last instruction in this example (MOV CS,AX) assembles without error, but causes problems if executed. If
only the contents of CS change without changing IP, the next step in the program is unknown and therefore causes the
program to go awry.

EXAMPLE 3-1

0000 8B C3 MOV AX,BX ;copy contents of BX into AX

0002 8A CE MOV CL,DH ;copy the contents of DH into CL
0004 8A CD MOV CL,CH ;copy the contents of CH into CL
0006 66|8B C3 MOV EAX,EBX ;copy the contents of EBX into EAX
0009 66|8B D8 MOV EBX,EAX ;copy EAX into EBX, ECX, and EDX
000C 66|8B C8 MOV ECX, EAX

000F 66|8B DO MOV EDX, EAX

0012 8C C8 MOV AX,CS ;copy CS into DS

0014 8E D8 MOV DS, AX

0016 8E C8 MOV CS,AX ;assembles, but will cause problems

Immediate Addressing

Another data-addressing mode is immediate addressing. The term immediate implies that the data immediately follow
the hexadecimal opcode in the memory. Also note that immediate data are constant data, while the data transferred
from a register are variable data. Immediate addressing operates upon a byte or word of data. In the 80386 through the
Pentium 4 microprocessors, immediate addressing also operates on doubleword data. The MOV immediate instruction
transfers a copy of the immediate data into a register or a memory location. Figure 3—4 shows the operation of a MOV
EAX,13456H instruction. This instruction copies the 13456H from the instruction, located in the memory immediately
following the hexadecimal opcode, into register EAX. As with the MOV instruction illustrated in Figure 3-3, the
source data overwrites the destination data.

In symbolic assembly language, the symbol # precedes immediate data in some assemblers.? The MOV
AX,#3456H instruction is an example. Most assemblers do not use the # symbol, but represent immediate data as
in the MOV AX,3456H instruction. In this text, the # symbol is not used for immediate data. The most common
assemblers—Intel ASM, Microsoft MASM,? and Borland TASM*—do not use the # symbol for immediate data,
but an older assembler used with some Hewlett-Packard logic development systems do, as may others.

The symbolic assembler portrays immediate data in many ways. The letter H appends hexadecimal data. If
hexadecimal data begin with a letter, the assembler requires that the data start with a 0. For example, to represent

Register array Program
EAX 3333 6 2 91 ‘L MOV EAX,13456H
EBX 13456H
W

FIGURE 3-4 The operation of the MOV EAX,3456H instruction. This instruc-
tion copies the immediate data (13456H) into EAX.

2This is true for the assembler provided by Hewlett-Packard in some development systems.
3MASM (MACRO assembler) is a trademark of Microsoft Corporation.
4TASM (Turbo assembler) is a trademark of Borland Corporation.

3-1 DATA-ADDRESSING MODES 61

TABLE 3-2 Examples of immediate addressing using the MOV instruction.

Assembly Language Size Operation

MOV BL,44 8-bits Copies a 44 decimal (2CH) into BL
MOV AX,44H 16-bits Copies a 0044H into AX

MOV S1,0 16-bits Copies a 0000H into SI

MOV CH,100 8-bits Copies a 100 decimal (64H) into CH
MOV ALA 8-bits Copies an ASCII A into AL

MOV AX,'AB’ 16-bits Copies an ASCII BA* into AX

MOV CL,11001110B 8-bits Copies a 11001110 binary into CL
MOV EBX,12340000H 32-bits Copies a 12340000H into EBX
MOV ESI,12 32-bits Copies a 12 decimal into ESI
MOV EAX,100Y 32-bits Copies a 100 binary into EAX

*Note: This is not an error. The ASCII characters are stored as a BA, so care should be ex-
ercised when using a word-sized pair of ASCII characters.

a hexadecimal F2, a OF2H is used in assembly language. In some assemblers (though not in MASM, TASM, or
this text), hexadecimal data are represented with an ’h, as in MOV AX,#h1234. Decimal data are represented as
is and require no special codes or adjustments. (An example is the 100 decimal in the MOV AL,100 instruction.)
An ASCII-coded character or characters may be depicted in the immediate form if the ASCII data are enclosed in
apostrophes. (An example is the MOV BH,’A’ instruction, which moves an ASCII-coded A (41H) into register
BH.) Be careful to use the apostrophe (*) for ASCII data and not the single quotation mark (). Binary data are rep-
resented if the binary number is followed by the letter B, or, in some assemblers, the letter Y. Table 3~2 shows
many different variations of MOV instructions that apply immediate data.

Example 3-2 shows various immediate instructions in a short program that places a 0000H into the 16-bit
registers AX, BX, and CX. This is followed by instructions that use register addressing to copy the contents of AX
into registers SI, DI, and BP. This is a complete program that uses programming models for assembly and execu-
tion. The .MODEL .TINY statement directs the assembler to assemble the program into a single code segment.
The .CODE statement or directive indicates the start of the code segment; the .STARTUP statement indicates the
starting instruction in the program; and the .EXIT statement causes the program to exit to DOS. The END state-
ment indicates the end of the program file. This program is assembled with MASM and executed with CodeView’
(CV) to view its execution. Note that the most recent version of TASM will also accept MASM code. To store the
program into the system use either the DOS EDIT program or Programmer’s WorkBench® (PWB). Note that a
TINY program always assembles as a command (.COM) program.

EXAMPLE 3-2
.MODEL TINY ;choose single segment model
0000 .CODE ;indicate start of code segment
. STARTUP ;indicate start of program
0100 B8 0000 MOV AX,0 ;place 0000H into AX
0103 BB 0000 MOV BX, 0000H ;place 0000H into BX
0106 B9 0000 MOV CX,0 ;place 0000H into CX

5CodeView is a registered trademark of Microsoft Corporation.
®Programmer’s WorkBench is a registered trademark of Microsoft Corporation.

62 CHAPTER 3 ADDRESSING MODES

0109 8B FO MOV SI,AX ;copy AX into SI

010B 8B F8 MOV DI,AX ;copy AX into DI

010D 8B E8 MOV BP,AX ;copy AX into BP
.EXIT ;exit to DOS
END ;end of file

Each statement in a program consists of four parts or fields, as illustrated in Example 3-3. The leftmost field is
called the label and it is used to store a symbolic name for the memory location that it represents. All labels must begin
with a letter or one of the following special characters: @, $, _, or ?. A label may be of any length from 1 to 35 char-
acters. The label appears in a program to identify the name of a memory location for storing data and for other pur-
poses that are explained as they appear. The next field is called the opcode field; it is designed to hold the instruction,
or opcode. The MOV part of the move data instruction is an example of an opcode. To the right of the opcode field is
the operand field, which contains information used by the opcode. For example, the MOV AL,BL instruction has the
opcode MOV and operands AL and BL. Note that some instructions contain between zero and three operands. The
final field, the comment field, contains a comment about an instruction or a group of instructions. A comment always
begins with a semicolon (;).

EXAMPLE 3-3
LABEL OPCODE OPERAND COMMENT
DATAl DB 23H ;define DATAl as a byte of 23H
DATA2 DW 1000H ;define DATA2 as a word of 1000H
START: MOV AL,BL ;copy BL into AL

MOV BH, AL ;copy AL into BH

MOV CX,200 ;copy 200 decimal into CX

When the program is assembled and the list (LST) file is viewed, it appears as the program listed in Ex-
ample 3-2. The hexadecimal number at the far left is the offset address of the instruction or data. This number is
generated by the assembler. The number or numbers to the right of the offset address are the machine-coded
instructions or data that are also generated by the assembler. For example, if the instruction MOV AX,0 appears in
a file and it is assembled, it appears in offset memory location 0100 in Example 3-2. Its hexadecimal machine lan-
guage form is B8 0000. The B8 is the opcode in machine language and the 0000 is the 16-bit wide data with a
value of zero. When the program was written, only the MOV AX,0 was typed into the editor; the assembler gen-
erated the machine code and addresses, and stored the program in a file ending with the extension .LST. Note that
all programs shown in this text are in the form generated by the assembler.

Direct Data Addressing

Most instructions can use the direct data-addressing mode. In fact, direct data addressing is applied to many in-
structions in a typical program. There are two basic forms of direct data addressing: (1) direct addressing, which
applies to a MOV between a memory location and AL, AX, or EAX, and (2) displacement addressing, which ap-
plies to almost any instruction in the instruction set. In either case, the address is formed by adding the displace-
ment to the default data segment address or an alternate segment address.

Direct Addressing. Direct addressing with a MOV instruction transfers data between a memory location, located within
the data segment, and the AL (8-bit), AX (16-bit), or EAX (32-bit) register. A MOV instruction using this type of ad-
dressing is usually a 3-byte long instruction. (In the 80386 and above, a register size prefix may appear before the instruc-
tion, causing it to exceed three bytes in length.)

The MOV AL DATA instruction, as represented by most assemblers, loads AL from data segment memory loca-
tion DATA (1234H). Memory location DATA is a symbolic memory location, while the 1234H is the actual hexadecimal

3-1 DATA-ADDRESSING MODES 63

Memory
11235H
AH AL
EAX 8AH < 8AH 8 A |11234H
EBX 11233H
ECX 11232H

FIGURE 3-5 The operation of the MOV AL,[1234H] instruction when DS = 1000H.

location. With many assemblers, this instruction is represented as a MOV AL,[1234H]’ instruction. The [1234H] is an ab-
solute memory location that is not allowed by all assembler programs. Note that this may need to be formed as MOV
AL,DS:[1234H] with some assemblers, to show that the address is in the data segment. Figure 3-5 shows how this instruc-
tion transfers a copy of the byte-sized contents of memory location 11234H into AL. The effective address is formed by
adding 1234H (the offset address) to 1000H (the data segment address of 1000H) in a system operating in the real mode.

Table 3-3 lists the three direct addressed instructions. These instructions often appear in programs, so Intel decided
to make them special three-byte long instructions to reduce the length of programs. All other instructions that move data
from a memory location to a register, called displacement-addressed instructions, require four or more bytes of memory
for storage in a program.

Displacement Addressing. Displacement addressing is almost identical to direct addressing, except that the instruction
is four bytes wide instead of three. In the 80386 through the Pentium 4, this instruction can be up to seven bytes wide if a
32-bit register and a 32-bit displacement are specified. This type of direct data addressing is much more flexible because
most instructions use it.

If the operation of the MOV CL,DS:[1234H] instruction is compared to that of the MOV AL,DS:[1234H] instruc-
tion of Figure 3-5, both basically perform the same operation except for the destination register (CL versus AL). Another
difference only becomes apparent upon examining the assembled versions of these two instructions. The MOV
AL,DS:[1234H] instruction is three bytes long and the MOV CL,DS:[1234H] instruction is four bytes long, as illustrated
in Example 3-4. This example shows how the assembler converts these two instructions into hexadecimal machine lan-
guage. You must include the segment register DS: in this example, before the [offset] part of the instruction. You may use
any segment register, but, in most cases, data are stored in the data segment, so this example uses DS:[1234H].

TABLE 3-3 Direct addressed instructions using AX and AL.

Assembly Language Size Operation

MOV AL,NUMBER 8-bits Copies the byte contents of data segment memory
location NUMBER into AL

MOV AX,COW 16-bits Copies the word contents of data segment memory
location COW into AX

MOV NEWS,AL 8-bits Copies AL into data segment memory location NEWS

MOV THERE,AX 16-bits Copies AX into data segment memory location THERE

MOV ES:[2000 H],AL 8-bits Copies AL into extra data segment memory location 2000H

"This form may be used with MASM, but most often appears when a program is entered or listed by DEBUG, a debugging toll
provided with DOS.

64 CHAPTER3 ADDRESSING MODES

EXAMPLE 3—4
0000 A0 1234 R MOV AL,DS: [1234H]
0003 8A OE 1234 R MOV CL,DS: [1234H]

Table 34 lists some MOV instructions, using the displacement form of direct addressing. Not all variations are
listed because there are many MOV instructions of this type. The segment registers can be stored or loaded from memory.

Example 3—5 shows a short program using models that address information in the data segment. Note that the data
segment begins with a DATA statement to inform the assembler where the data segment begins. The model size is ad-
justed from .TINY, as shown in Example 33, to SMALL so that a data segment can be included. The SMALL model al-
lows one data segment and one code segment. The SMALL model is often used whenever memory data are required for
a program. A SMALL model program assembles as an execute ((EXE) program. Notice how this example allocates
memory locations in the data segment by using the DB and DW directives. Here the STARTUP statement not only indi-
cates the start of the code, but it also loads the data segment register with the segment address of the data segment. If this
program is assembled and executed with CodeView, the instructions can be viewed as they execute and change registers
and memory locations.

EXAMPLE 3-5
.MODEL SMALL ;select SMALL model
0000 .DATA ;indicate start of DATA segment
0000 10 DATA1l DB 10H ;place 10H in DATAl
0001 00 DATAZ2 DB 0 ;place 0 in DATA2
0002 0000 DATA3 DW 0 ;place 0 in DATA3
0004 AAAA DATA4 DwW OAAAAH ;place AAAAH in DATA4
0000 .CODE ;indicate start of CODE segment
. STARTUP ;indicate start of program
0017 A0 0000 R MOV AL,DATAl ;copy DATAl to AL
001A 8A 26 0001 R MOV AH, DATA2 ;copy DATA2 to AH
001E A3 0002 R MOV DATA3, AX ;save AX at DATA3
0021 8B 1E 0004 R MOV BX, DATA4 ;load BX with DATA4
EXIT ;exit to DOS
END ;end file

TABLE 3-4 Examples of direct data addressing using a displacement.

Assembly Language Size Operation

MOV CH,DOG 8-bits Copies the byte contents of data segment memory
location DOG into CH

MOV CH,[1000H]' 8-bits Copies the byte contents of data segment offset address
1000H into CH

MOV ES,DATA6E 16-bits Copies the word contents of data segment memory
location DATAS into ES

MOV DATA7,BP 16-bits Copies BP into data segment memory location DATA7

MOV NUMBER,SP 16-bits Copies SP into data segment memory location NUMBER

*Note: This form of addressing is seldom used with most assembiers because an actual numeric offset ad-
dress is rarely accessed.

3-1 DATA-ADDRESSING MODES 65

Register Indirect Addressing

Register indirect addressing allows data to be addressed at any memory location through an offset address held in
any of the following registers: BP, BX, DI, and SI. For example, if register BX contains a 1000H and the MOV
AX,[BX] instruction executes, the word contents of data segment offset address 1000H are copied into register AX.
If the microprocessor is operated in the real mode and DS = 0100H, this instruction addresses a word stored at
memory bytes 2000H and 2001H, and transfers it into register AX (see Figure 3-6). Note that the contents of 2000H
are moved into AL and the contents of 2001H are moved into AH. The [] symbols denote indirect addressing in as-
sembly language. In addition to using the BP, BX, DI, and SI registers to indirectly address memory, the 80386 and
above allow register indirect addressing with any extended register except ESP. Some typical instructions using
indirect addressing appear in Table 3-5.

e —]
00002002
EAX Moa Mo % 34 00002001
EBX 10 00 + 1 2 00002000
1000\ 2000
ECX ,
—
M ,M’
00001002
CS 00001001
*1000
DS 0100 > 00001000

*After DS is appended with a 0.

FIGURE 3-6 The operation of the MOV AX,[BX] instruction when BX = 1000H and DS =
0100H. Note that this instruction is shown after the contents of memory are transferred to AX.

TABLE 3-5 Example of register indirect addressing.

Assembly Language Size Operation

MOV CX,[BX] 16-bits Copies the word contents of the data segment memory
location address by BX into CX

MOV [BP],DL* 8-bits Copies DL into the stack segment memory location
addressed by BP

MOV [DI],BH 8-bits Copies BH into the data segment memory location
addressed by DI

MOV [DI},[BX] — Memory-to-memory moves are not allowed except with

string instructions

*Note: Data addressed by BP are by default located in the stack segment, while all other indirect addressing
modes use the data segment by default.

66 CHAPTER 3 ADDRESSING MODES

The data segment is used by default with register indirect addressing or any other addressing mode that uses BX,
DI, or SI to address memory. If the BP register addresses memory, the stack segment is used by default. These settings
are considered the default for these four index and base registers. For the 80386 and above, EBP
addresses memory in the stack segment by default; EAX, EBX, ECX, EDX, EDI, and ESI address memory in the data
segment by default. When using a 32-bit register to address memory in the real mode, the contents of the 32-bit register
must never exceed 0000FFFFH. In the protected mode, any value can be used in a 32-bit register that is used to indirectly
address memory, as long as it does not access a location outside of the segment, as dictated by the access rights byte. An
example 80386/80486/Pentium 4 instruction is MOV EAX,[EBX]. This instruction loads EAX with the doubleword-
sized number stored at the data segment offset address indexed by EBX.

In some cases, indirect addressing requires specifying the size of the data are specified with the special assembler
directive BYTE PTR, WORD PTR, or DWORD PTR. These directives indicate the size of the memory data addressed
by the memory pointer (PTR). For example, the MOV AL,[DI] instruction is clearly a byte-sized move instruction, but
the MOV [DI],10H instruction is ambiguous. Does the MOV [DI],10H instruction address a byte-, word-, or double-
word-sized memory location? The assembler can’t determine the size of the 10H. The instruction MOV BYTE PTR
[DI],10H clearly designates the location addressed by DI as a byte-sized memory location. Likewise, the MOV
DWORD PTR [DI],10H clearly identifies the memory location as doubleword-sized. The BYTE PTR, WORD PTR,
and DWORD PTR directives are used only with instructions that address a memory location through a pointer or index
register with immediate data, and for a few other instructions that are described in subsequent chapters.

Indirect addressing often allows a program to refer to tabular data located in the memory system. For example,
suppose that you must create a table of information that contains 50 samples taken from memory location 0000:046C.
Location 0000:046C contains a counter that is maintained by the personal computer’s real-time clock. Figure 3-7 shows
the table and the BX register used to sequentially address each location in the table. To accomplish this task, load the
starting location of the table into the BX register with a MOV immediate instruction. After initializing the starting ad-
dress of the table, use register indirect addressing to store the 50 samples sequentially.

The sequence shown in Example 3-6 loads register BX with the starting address of the table and initializes the
count, located in register CX, to 50. The OFFSET directive tells the assembler to load BX with the offset address of
memory location TABLE, not the contents of TABLE. For example, the MOV BX,DATAS instruction copies the con-
tents of memory location DATAS into BX, while the MOV BX,OFFSET DATAS instruction copies the offset address
of DATAS into BX. When the OFFSET directive is used with the MOV instruction, the assembler calculates the offset
address and then uses a MOV immediate instruction to load the address into the specified 16-bit register.

Memory

Table + 49

Table + 2

Table + 1

EBX 0000 TABLE > Table

M

FIGURE 3-7 An array (TABLE) containing 50 bytes that are indirectly
addressed through register BX.

3-1 DATA-ADDRESSING MODES 67

EXAMPLE 3-6
.MODEL SMALL ;select SMALL model
0000 .DATA ;start of DATA segment
0000 0032 [DATAS DW 50 DUP (?) ;setup array of 50 bytes
0000
]
0000 .CODE ;start of CODE segment
. STARTUP ;start of program
0017 B8 0000 MOV AX, 0
001A 8E CO MOV ES,AX ;address segment 0000 with ES
001C BB 0000 R MOV BX,OFFSET DATAS ;address DATAS array
001F B9 0032 MOV CX, 50 ;load counter with 50
0022 AGAIN:
0022 26:A1 046C MOV AX,ES: [046CH] ;get clock value
0026 89 07 MoV (BX],AX ;save clock value in DATAS
0028 43 INC BX ;increment BX to next element
0029 E2 F7 LOOP AGAIN jrepeat 50 times
.EXIT ;exit to DOS
END ;end file

Once the counter and pointer are initialized, a repeat-until CX = 0 loop executes. Here, data are read from
extra segment memory location 46CH with the MOV AX,ES:[046CH] instruction and stored in memory that is in-
directly addressed by the offset address located in register BX. Next, BX is incremented (one is added to BX) to
the next table location, and finally the LOOP instruction repeats the LOOP 50 times. The LOOP instruction decre-
ments (subtracts one from) the counter (CX); if CX is not zero, LOOP causes a jump to memory location AGAIN.
If CX becomes zero, no jump occurs and this sequence of instructions ends. This example copies the most recent
50 values from the clock into the memory array DATAS. This program will often show the same data in each
location because the contents of the clock are changed only 18.2 times per second. To view the program and its
execution, use the CodeView program. To use CodeView, type CV FILE.EXE or access it as DEBUG from the
Programmer’s WorkBench program under the RUN menu. Note that CodeView functions only with .EXE or
.COM files. Some useful CodeView switches are /50 for a 50-line display and /S for use of high-resolution video
displays in an application. To debug the file TEST.COM with 50 lines, type CV /50 TEST.COM at the DOS
prompt.

Base-Plus-Index Addressing

Base-plus-index addressing is similar to indirect addressing because it indirectly addresses memory data. In the
8086 through the 80286, this type of addressing uses one base register (BP or BX), and one index register (DI or
SI) to indirectly address memory. The base register often holds the beginning location of a memory array, while
the index register holds the relative position of an element in the array. Remember that whenever BP addresses
memory data, both the stack segment register and BP generate the effective address.

In the 80386 and above, this type of addressing allows the combination of any two 32-bit extended registers
except ESP. For example, the MOV DL,[EAX+EBX] instruction is an example using EAX (as the base) plus EBX
(as the index). If the EBP register is used, the data are located in the stack segment instead of in the data segment.

Locating Data with Base-plus-index Addressing. Figure 3-8 shows how data are addressed by the MOV
DX, [BX+DI] instruction when the microprocessor operates in the real mode. In this example, BX = 1000H, DI =
0010H, and DS = 0100H, which translate into memory address 02010H. This instruction transfers a copy of the
word from location 02010H into the DX register. Table 36 lists some instructions used for base-plus-index ad-
dressing. Note that the Intel assembler requires that this addressing mode appear as [BX][DI] instead of [BX+DI].
The MOV DX,[BX+DI] instruction is MOV DX,[BX][DI] for a program written for the Intel ASM assembler.

68 CHAPTER 3 ADDRESSING MODES

Memory
W___/

02015H
EAX

02014H
EBX 10 00 02013H
ECX 02012H

L — | A B 02011H
EDX A B 03 ABO3
03 02010H <——

0200FH
ESP
EBP

1000H
ESI
0010H 2010H
EDI 0010 + +
1010H
0 1000H
- DS x 10H

FIGURE 3-8 An example showing how the base-plus-index addressing mode functions for the MOV
DX,[BX+Dl] instruction. Notice that memory address 02010H is accessed because DS = 0100H, BX =100H,
and DI = 0010H.

TABLE 3-6 Examples of base-plus-index addressing.

Assembly Language Size Operation

MOV CX,[BX+DlI] 16-bits Copies the word contents of the data segment memory
location address by BX plus DI into CX

MOV CH,[BP+Sl] 8-bits Copies the byte contents of the stack segment memory
location addressed by BP plus Sl into CH

MOV [BX+SI],SP 16-bits Copies SP into the data segment memory location
addresses by BX plus SI

MOV [BP+DI],AH 8-bits Copies AH into the stack segment memory location

addressed by BP plus DI

This text uses the first form in all example programs, but the second form can be used in many assemblers, in-
cluding MASM from Microsoft. Instructions like MOV DI,[BX+DI] will assemble, but will not execute correctly.

Locating Array Data Using Base-plus-index Addressing. A major use of the base-plus-index addressing mode is
to address elements in a memory array. Suppose that the elements in an array, located in the data segment at
memory location ARRAY, must be accessed. To accomplish this, load the BX register (base) with the beginning
address of the array, and the DI register (index) with the element number to be accessed. Figure 3-9 shows the use
of BX and DI to access an element in an array of data.

A short program, listed in Example 3-7, moves array element 10H into array element 20H. Notice that the array
element number, loaded into the DI register, addresses the array element. Also notice how the contents of the ARRAY
have been initialized so that element 10H contains a 20H.

3-1

DATA-ADDRESSING MODES

BX

ARRAY

69

Memory

D

Element

ARRAY + 5
ARRAY + 4
ARRAY + 3
ARRAY + 2
ARRAY + 1

ARRAY

‘A—V\/J

FIGURE 3-9 An example of the base-plus-index addressing mode. Here an elemént (D) of
an ARRAY (BX) is addressed.

EXAMPLE 3-7

0000

0000

0010
0011

0000

0017
001A
001D
001F
0022

0010 [

29

00

001E [

BB
BF
8A
BF
88

00

0000 R
0010
01
0020
01

.MODEL SMALL
.DATA

ARRAY DB 16 DUP (?)

DB 29H
DB 30 DUP (?)

.CODE
.STARTUP

MOV BX,OFFSET ARRAY
MOV DI, 10H

MOV AL, [BX+DI]

MOV DI,20H

MOV [BX+DI],AL

.EXIT
END

Register Relative Addressing

Register relative addressing is similar to base-plus-index addressing and displacement addressing. In register
relative addressing, the data in a segment of memory are addressed by adding the displacement to the contents of
a base or an index register (BP, BX, DI, or SI). Figure 3-10 shows the operation of the MOV AX,[BX+1000H] in-
struction. In this example, BX = 0100H and DS = 0200H, so the address generated is the sum of DS x 10H, BX,
and the displacement of 1000H or 03100H. Remember that BX, DI, or SI addresses the data segment and BP
addresses the stack segment. In the 80386 and above, the displacement can be a 32-bit number and the register can

;select SMALL model
;start of DATA segment

;setup ARRAY

;sample data at element 10H

;start of CODE segment
;start of program

;address ARRAY
;address element 10H
;get element 10H
;address element 20H
;save in element 20H

;exit to DOS
;end of file

70 CHAPTER 3 ADDRESSING MODES

Memory
il

Register array

A —
EAX 2222 A0} 76 AQ76 AO 03101H
5000 7 6 | 03100H

EBX 01l oo
0100H
1000H
1100H
DS x 10H +
00H 3100H

FIGURE 3-10 The operation of the MOV AX,[BX+1000H] instruction,
when BX = 0100H and DS = 0200H.

TABLE 3-7 Examples of register relative addressing.

Assembly Language Size Operation

MOV AX,[DI+100H] 16-bits Copies the word contents of the data segment memory location
addressed by DI plus 100H into AX

MOV ARRAY/[SI],BL 8-bits Copies BL into the data segment memory location addressed by
ARRAY pius SI

MOV LIST[SI+2],CL 8-bits Copies CL into the data segment memory location addressed by
sum of LIST, SI, and 2

MOV DI,SET_IT[BX] 16-bits Copies the word contents of the data segment memory location

addressed by the sum of SET_IT and BX into DI

be any 32-bit register except the ESP register. Remember that the size of a real mode segment is 64K bytes long.
Table 3-7 lists a few instructions that use register relative addressing.

The displacement can be a number added to the register within the [], as in the MOV AL,[DI+2] instruction,
or it can be a displacement subtracted from the register, as in MOV AL,[SI-1]. A displacement also can be an
offset address appended to the front of the [], as in MOV AL,DATA[DI]. Both forms of displacements also can
appear simultaneously, as in the MOV AL,DATA[DI+3] instruction. In all cases, both forms of the displacement
add to the base, or base and index register within the []. In the 8086-80286 microprocessors, the value of the
displacement is limited to a 16-bit signed number with a value ranging between +32,767 (7FFFH) and 32,768
(8000H); in the 80386 and above, a 32-bit displacement is allowed with a value ranging between +2,147,483,647
(7FFFFFFFH) and -2,147,483,648 (80000000H).

Addressing Array Data with Register Relative. 1t is possible to address array data with register relative addressing,
such as one does with base-plus-index addressing. In Figure 3—11, register relative addressing is illustrated with the
same example as for base-plus-index addressing. This shows how the displacement ARRAY adds to index register DI
to generate a reference to an array element.

3-1 DATA-ADDRESSING MODES 71

Memory

ARRAY + 6
ARRAY +5
ARRAY + 4
Element ARRAY + 3
Displacement ARRAY + 2
ARRAY + 1
ARRAY

ARRAY

e

FIGURE 3-11 Register relative addressing used to address an element of ARRAY. The
displacement addresses the start of ARRAY, and DI accesses an element.

Example 3-8 shows how this new addressing mode can transfer the contents of array element 10H
into array element 20H. Notice the similarity between this example and Example 3-7. The main difference
is that, in Example 3-8, register BX is not used to address memory area ARRAY; instead, ARRAY is used
as a displacement to accomplish the same task.

EXAMPLE 3-8
.MODEL SMALL ;select SMALL model
0000 .DATA ;start of DATA segment
0000 0010 [ARRAY DB 16 DUP (?) ;setup ARRAY
00
1
0010 29 DB 29H ;sample data at element 10H
0011 O001E [DB 30 DUP (?)
00
]
0000 .CODE ;start of CODE segment
.STARTUP ;start of program
0017 BF 0010 MOV DI, 10H ;address element 10H
001A 8A 85 0000 R MOV AL,ARRAY[DI] ;get element 10H
001E BF 0020 MOV DI, 20H ;address element 20H
0021 88 85 0000 R MOV ARRAY([DI], AL ;save in element 20H
.EXIT ;exit to DOS

END ;end of file

72 CHAPTER3 ADDRESSING MODES

Base Relative-Plus-Index Addressing

The base relative-plus-index addressing mode is similar to the base-plus-index addressing mode, but it adds a dis-
placement, besides using a base register and an index register, to form the memory address. This type of addressing
mode often addresses a two-dimensional array of memory data.

Addressing Data with Base Relative-plus-index. Base relative-plus-index addressing is the least-used addressing
mode. Figure 3-12 shows how data are referenced if the instruction executed by the microprocessor is a MOV
AX,[BX+SI+100H]. The displacement of 100H adds to BX and SI to form the offset address within the data seg-
ment. Registers BX = 0020H, SI = 0010H, and DS = 1000H, so the effective address for this instruction is
10130H-the sum of these registers plus a displacement of 100H. This addressing mode is too complex for frequent
use in a program. Some typical instructions using base relative-plus-index addressing appear in Table 3-8. Note
that with the 80386 and above, the effective address is generated by the sum of two 32-bit registers plus a 32-bit
displacement.

Memory
i Register array .
A3 10131H
EAX A3]16 A316
16 10130H <—
EBX 00|20
ECX
EDX
0020H
ESP
EsP 0030H 0130H
e et
ESI 0010
0010H 10130H
—————] 10000H

0100H ps x 10H

FIGURE 3-12 An example of base relative-plus-index addressing using a MOV
AX,[BX+SI+100H] instruction. Note: DS = 1000H.

TABLE 3-8 Example base relative-plus-index instructions.

Assembly Language Size Operation

MOV DH,[BX+DI+20H} 8-bits Copies the byte contents of the data segment memory location
addressed by the sum of BX, DI, and 20H into DH

MOV AXFILE[BX+DI] 16-bits Copies the word contents of the data segment memory location
addressed by the sum of FILE, BX, and DI into AX

MOV LIST[BP+DI],CL 8-bits Copies CL into the stack segment memory location addressed
by the sum of LIST, BP, and DI

MOV LIST[BP+SI+4],DH 8-bits Copies DH into the stack segment memory location addressed

by the sum of LIST, BP, SI, and 4

3-1 DATA-ADDRESSING MODES 73

Memory
r—ﬁf
EDI [Etoment |
} REC C
REC B
EBX | recc |
' REC A
Displacement
[FLE | —

FIGURE 3-13 Base relative-plus-index addressing used to access a
FILE that contains multiple records (REC).

Addressing Arrays with Base Relative-plus-index. Suppose that a file of many records exists in memory and
each record contains many elements. This displacement addresses the file, the base register addresses a record, and
the index register addresses an element of a record. Figure 3-13 illustrates this very complex form of addressing.

Example 3-9 provides a program that copies element 0 of record A into element 2 of record C by using the
base relative-plus-index mode of addressing. This example FILE contains four records and each record contains 10
elements. Notice how the THIS BYTE statement is used to define the label FILE and RECA as the same memory
location.

EXAMPLE 3-9
.MODEL SMALL ; SMALL model
0000 .DATA ;start of DATA segment
0000 = 0000 FILE EQU THIS BYTE ;assign FILE to this byte
0000 000A [RECA DB 10 DUP (?) ;reserve 10 bytes for RECA
00
]
000A 000A [RECB DB 10 DUP (?) ;reserve 10 bytes for RECB
00
]
0014 000A [RECC DB 10 DUP (?) ;reserve 10 bytes for RECC
00
001E 000A [RECD DB 10 DUP (?) ;reserve 10 bytes for RECD
00
]
0000 .CODE ;start of CODE segment

. STARTUP ;start of program

74 CHAPTER 3 ADDRESSING MODES

0017 BB 0000 R MOV BX,OFFSET RECA ;address RECA
001A BF 0000 MOV DI,O ;address element 0
001D 8A 81 0000 R MOV AL,FILE[BX+DI] ;get data
0021 BB 0014 R MOV BX,OFFSET RECC ;address RECC
0024 BF 0002 MOV DI,2 ;address element 2
0027 88 81 0000 R MOV FILE([BX+DI], AL ;save data

.EXIT ;exit to DOS

END ;end of file

Scaled-Index Addressing

Scaled-index addressing is the last type of data-addressing mode discussed. This data-addressing mode is unique
to the 80386 through the Pentium 4 microprocessors. Scaled-index addressing uses two 32-bit registers (a base
register and an index register) to access the memory. The second register (index) is multiplied by a scaling factor.
The scaling factor can be 1X, 2X, 4X, or 8X. A scaling factor of 1X is implied and need not be included in the as-
sembly language instruction (MOV AL,[EBX+ECX]). A scaling factor of 2X is used to address word-sized
memory arrays, a scaling factor of 4X is used with doubleword-sized memory arrays, and a scaling factor of 8X is
used with quadword-sized memory arrays. ‘

An example instruction is MOV AX,[EDI+2*ECX]. This instruction uses a scaling factor of 2X, which mul-
tiplies the contents of ECX by 2 before adding it to the EDI register to form the memory address. If ECX contains
a 00000000H, word-sized memory element 0 is addressed; if ECX contains a 00000001H, word-sized memory el-
ement 1 is accessed, and so forth. This scales the index (ECX) by a factor of 2 for a word-sized memory array.
Refer to Table 3-9 for some examples of scaled-index addressing. As you can imagine, there are an extremely
large number of the scaled-index addressed register combinations. Scaling is also applied to instructions that use a
single indirect register to access memory. The MOV EAX,[4*EDI] is a scaled-index instruction that uses one reg-
ister to indirectly address memory.

Example 3-10 shows a sequenice of instructions that uses scaled-index addressing to access a word-sized
array of data called LIST. Note that the offset address of LIST is loaded into register EBX with the MOV
EBX,OFFSET LIST instruction. Once EBX addresses array LIST, the elements (located in ECX) of 2, 4, and 7 of
this word-wide array are added, using a scaling factor of 2 to access the elements. This program stores the 2 atel-
ement 2 into elements 4 and 7. Also notice the .386 directive to select the 80386 microprocessor. This directive
must follow the .MODEL statement for the assembler to process 80386 instructions for DOS. If the 80486 is in
use, the .486 directive appears after the MODEL statement; if the Pentium, Pentium Pro, Pentium II, Pentium I,

TABLE 3-9 Examples of scaled-index addressing. (Not for 8086/ 8088/80286 readers).

Assembly Language Size Operation
MOV EAX,[EBX+4*ECX] 32-bits Copies the doubleword contents of the data segment memory
location addressed by the sum of 4 times ECX plus EBX into
EAX

MOV [EAX+2*EDI+100H],CX 16-bits Copies CX into the data segment memory location addressed
by the sum of EAX, 100H, and 2 times EDI

MOV AL,[EBP+2*EDI-2] 8-bits Copies the byte contents of the stack segment memory
location addressed by the sum of EBP, —2, and 2 times EDI
into AL

MOV EAX,ARRAY[4"ECX] 32-bits Copies the doubleword contents of the data segment memory

location addressed by the sum of ARRAY plus 4 times ECX into
EAX

3-1 DATA-ADDRESSING MODES 75

or Pentium 4 is in use, the .586 directive appears after MODEL. If the microprocessor selection directive appears
before the MODEL statement, the microprocessor executes instructions in the 32-bit mode, which is not compat-
ible with DOS.

EXAMPLE 3-10
.MODEL SMALL ;select SMALL model
.386 ;use the 80386
0000 .DATA ;start of DATA segment
0000 0000 0001 0002 LIST DW 0,1,2,3,4 ;define array list
0003 0004
000A 0005 0006 0007 DW 5,6,7,8,9
0008 0009
0000 .CODE ;start of CODE segment
.STARTUP ;start of program
0010 66| BB 00000000 R MOV EBX,OFFSET LIST ;address array LIST
0016 66| B9 00000002 MOV ECX,2 ;jget element 2
001C 67& 8B 04 4B MOV AX, [EBX+2*ECX]
0020 66| B9 00000004 MOV ECX,4 ;store in element 4
0026 67& 89 04 4B MOV [EBX+2*ECX],AX
002A 66| B9 00000007 MOV ECX,7 ;store in element 7
0030 67& 89 04 4B MOV [EBX+2*ECX],AX
.EXIT ;exit to DOS
. END ;end of file

Data Structures

A data structure is used to specify how information is stored in a memory array and can be quite useful with
applications that use arrays. It is best to think of a data structure as a template for data. The start of a structure is
identified with the STRUC assembly language directive and the end with the ENDS statement. A typical data
structure is defined and used three times in Example 3-11. Notice that the name of the structure appears with the
STRUC and with ENDS statement.

EXAMPLE 3-11
;Define INFO data structure
0057 INFO STRUC
0000 0020 [NAMES DB 32 DUP (?) ;32 bytes for name
00
1
0020 0020 [STREET DB 32 DUP (?) ;32 bytes for street
00
]
0040 0010 [CITY DB 16 DUP (?) ;16 bytes for city
00
]
0050 0002 [STATE DB 2 DUP (?) ;2 bytes for state
00
]
0052 0005 [ZIP DB 5 DUP (?) ;5 bytes for zip-code
00

INFO ENDS

76 CHAPTER 3 ADDRESSING MODES

0000 42 6F 62 20 53 6D NAMElL INFO <'Bob Smith’,’123 Main Street’, 'Wanda’, 'OH’,’44444'>
69 74 68
0017 [
00
]
31 32 33 20 4D
61 69 6E 20 53 74
72 65 65 74
0011 [
00
}
57 61 6E 64 61
000B |
00
]
4F 48 34 34 34
34 34

0057 53 74 65 76 65 20 NAME2 INFO <'’'Steve Doe’,’222 Mouse Lane’, 'Miller’,'PA’,'18100'>
44 6F 65
0017 |
00
]
32 32 32 20 4D
6F 75 73 65 20 4C
61 6E 65
0012 [
00
1
4D 69 6C 6C 65
72
000A [
00
]
50 41 31 38 31
30 30

O00AE 42 65 6E 20 44 6F NAME3 INFO <‘'Jim Dover’, ‘303 Main Street’, ‘Orender’, 'CA’,’90000'>
76 65 72
0017 [
00
]
33 30 33 20 4D
61 69 6E 20 53 74
72 65 65 74
0011 [
00
]
4F 72 65 6E 64
65 72
0009 [
00
1
43 41 39 30 30
30 30

The data structure in Example 3-11 defines five fields of information. The first is 32 bytes long and holds a
name; the second is 32 bytes long and holds a street address; the third is 16 bytes long for the city; the fourth is 2
bytes long for the state; the fifth is 5 bytes long for the ZIP Code. Once the structure is defined (INFO), it can be
filled, as illustrated, with names and addresses. Three examples of uses for INFO are illustrated. Note that literals
are surrounded with apostrophes and the entire field is surrounded with < > symbols when the data structure is
used to define data.

3-2 PROGRAM MEMORY-ADDRESSING MODES 77

When data are addressed in a structure, use the structure name and the field name to select a field from the
structure. For example, to address the STREET in NAME2, use the operand NAME2.STREET, where the name of
the structure is first followed by a period and then by the name of the field. Likewise, use NAME3.CITY to refer
to the city in structure NAME3.

EXAMPLE 3-12
;Clear names in array NAME1l
0000 B9 0020 MOV CX,32
0003 BO 00 : MOV AL, O
0005 BE 0000 R MOV SI,OFFSET NAME1l.NAMES
0008 F3/AA REP STOSB
;Clear street in array NAME2
000A B9 0020 MOV CX,32
000D BO 00 MOV AL,O
0010 BE 0077 R MOV SI,OFFSET NAME2.STREET
0013 F3/AA REP STOSB
;Clear zip-code in array NAME3
0015 B9 0005 MOV CX,5
0018 BO 00 MOV AL,O
001A BE 0100 R MOV SI,OFFSET NAME3.ZIP
001D F3/AA REP STOSB

A short sequence of instructions appears in Example 3-12 that clears the name field in structure
NAME], the address field in structure NAME?2, and the ZIP Code field in structure NAME3. The function
and operation of the instructions in this program are defined in later chapters in the text. You may wish to
refer to this example once these instructions are learned.

3-2 PROGRAM MEMORY-ADDRESSING MODES

Program memory-addressing modes, used with the JMP and CALL instructions, consist of three distinct
forms: direct, relative, and indirect. This section introduces these three addressing forms, using the JMP in-
struction to illustrate their operation.

Direct Program -Memory Addressing

Direct program memory addressing is what many early microprocessors used for all jumps and calls. Direct
program memory addressing is also used in high-level languages, such as the BASIC language GOTO and
GOSUB instructions. The microprocessor uses this form of addressing, but not as often as relative and indi-
rect program memory addressing are used.

The instructions for direct program memory addressing store the address with the opcode. For ex-
ample, if a program jumps to memory location 10000H for the next instruction, the address (10000H) is
stored following the opcode in the memory. Figure 3—14 shows the direct intersegment JMP instruction and
the four bytes required to store the address 10000H. This JMP instruction loads CS with 1000H and IP with
0000H to jump to memory location 10000H for the next instruction. (An intersegment jump is a jump to
any memory location within the entire memory system.) The direct jump is often called a far jump because
it can jump to any memory location for the next instruction. In the real mode, a far jump accesses any loca-

78 CHAPTER3 ADDRESSING MODES

Opcode Offset (low) Offset (high) Segment (low) Segment (high)

E A 00 00 00 10

FIGURE 3-14 The 5-byte machine language version of a JMP [10000H]
instruction.

tion within the first 1M byte of memory by changing both CS and IP. In protected mode operation, the far
jump accesses a new code segment descriptor from the descriptor table, allowing it to jump to any memory
location in the entire 4G-byte address range in the 80386 through Pentium 4 microprocessors.

The only other instruction that uses direct program addressing is the intersegment or far CALL in-
struction. Usually, the name of a memory address, called a label, refers to the location that is called or
jumped to instead of the actual numeric address. When using a label with the CALL or JMP instruction,
most assemblers select the best form of program addressing.

Relative Program Memory Addressing

Relative program memory addressing is not available in all early microprocessors, 10000 EB } IMP [2]
but it is available to this family of microprocessors. The term relative means 10001 02
“relative to the instruction pointer (IP).” For example, if a JMP instruction skips 10002 —
the next two bytes of memory, the address in relation to the instruction pointer is a :0003 —

. . . . 0004
2 that adds to the instruction pointer. This develops the address of the next program
instruction. An example of the relative JMP instruction is shown in Figure 3-15. fFIGURE 3-15 A JMP [2]
Notice that the JMP instruction is a one-byte instruction, with a one-byte or a two- jngtryction. This instruction
byte displacement that adds to the instruction pointer. A one-byte displacement is skips over the two bytes of
used in short jumps, and a two-byte displacement is used with near jumps and calls. memory that follow the
Both types are considered to be intrasegment jumps. (An intrasegment jump is a JMP instruction.
jump anywhere within the current code segment.) In the 80386 and above, the dis-
placement can also be a 32-bit value, allowing them to use relative addressing to any location within their 4G-byte
code segments.

Relative JMP and CALL instructions contain either an 8-bit or a 16-bit signed displacement that allows a
forward memory reference or a reverse memory reference. (The 80386 and above can have an 8-bit or 32-bit dis-
placement.) All assemblers automatically calculate the distance for the displacement and select the proper one-,
two- or four-byte form. If the distance is too far for a two-byte displacement in an 8086 through 80286 micro-
processor, some assemblers use the direct jump. An 8-bit displacement (short) has a jump range of between +127
and —128 bytes from the next instruction, while a 16-bit displacement (near) has a range of +32K bytes. In the
80386 and above, a 32-bit displacement allows a range of +2G bytes. The 32-bit displacement can only be used in
the protected mode.

Indirect Program Memory Addressing

The microprocessor allows several forms of program indirect memory addressing for the JMP and CALL instruc-
tions. Table 3-10 lists some acceptable program indirect jump instructions, which can use any 16-bit register (AX,
BX, CX, DX, SP, BP, DI, or SI); any relative register ((BP], [BX], [DI], or [SI}); and any relative register with a
displacement. In the 80386 and above, an extended register can also be used to hold the address or indirect address
of a relative IMP or CALL. For example, the JMP EAX jumps to the location address by register EAX.

If a 16-bit register holds the address of a IMP instruction, the jump is near. For example, if the BX register
contains a 1000H and a JMP BX instruction executes, the microprocessor jumps to offset address 1000H in the
current code segment.

3-3 STACK MEMORY-ADDRESING MODES 79

TABLE 3-10 Examples of indirect program memory addressing.

Assembly Language Operation
JMP AX Jumps to the current code segment location addressed by the contents of AX
JMP CX Jumps to the current code segment location addressed by the contents of CX

JMP NEAR PTR [BX] Jumps to the current code segment location addressed by the contents of the data
segment memory location addressed by BX

JMP NEAR PTR[DI+2] Jumps to the current code segment location addressed by the contents of the data
segment memory location addressed by DI plus 2

JMP TABLE[BX] Jumps to the current code segment location addressed by the conténts of the data
segment memory location addressed by TABLE plus BX

If a relative register holds the address, the jump is also considered to be an indirect

TABLE DW LOCO
jump. For example, a JMP [BX] refers to the memory location within the data segment at

DW LOC1
the offset address contained in BX. At this offset address is a 16-bit number that is used as DW LOC2
the offset address in the intrasegment jump. This type of jump is sometimes called an DW LOC3

indirect-indirect or double-indirect jump.
Figure 3-16 shows a jump table that is stored, beginning at memory location

TABLE. This jump table is referenced by the short program of Example 3-13. In this FIGURE 3-16 A

example, the BX register is loaded with a 4 so, when it combines in the JMP TABLE[BX] YMP table tha
. . ith TABLE. the effecti ddress is th £ th d in th stores addresses of
instruction wi » the effective address is the contents of the second entry in the . " programs.

jump table. The exact address

chosen from the

EXAMPLE 3-13 TABLE is deter-
;Using indirect addressing for a jump mined by an index
; stored with the
0000 BB 0004 MOV BX, 4 ;address LOC2]ump instruction.
0003 FF A7 23A1 R JMP TABLE[BX] ;jump to LOC2

3-3 STACK MEMORY-ADDRESSING MODES

The stack plays an important role in all microprocessors. It holds data temporarily and stores return addresses for
procedures. The stack memory is a LIFO (last-in, first-out) memory, which describes the way that data are stored
and removed from the stack. Data are placed onto the stack with a PUSH instruction and removed with a POP
instruction. The CALL instruction also uses the stack to hold the return address for procedures and a RET (return)
instruction to remove the return address from the stack.

The stack memory is maintained by two registers: the stack pointer (SP or ESP) and the stack segment
register (SS). Whenever a word of data is pushed onto the stack [see Figure 3-17(a)], the high-order 8 bits are
placed in the location addressed by SP — 1. The low-order 8 bits are placed in the location addressed by SP - 2. The
SP is then decremented by 2 so that the next word of data is stored in the next available stack memory location. The
SP/ESP register always points to an area of memory located within the stack segment. The SP/ESP register adds to
SS oo 10H to form the stack memory address in the real mode. In protected mode operation, the SS register holds a
selector that accesses a descriptor for the base address of the stack segment.

80 CHAPTER 3 ADDRESSING MODES

Memory
Register array —— |
EAX
EBX 12134 1234 J\ 12
4
ECX Y 2
EDX
\/—/V\
ESP | _4?
. T~
SS x 10H
(a)
Register array Memory
EAX
EBX)
N | 12
ECX 12134Y(1234
EDX N 34
L

ESP | 4.?
-/__/——N—
SS x 10H

(b)

FIGURE 3-17 The PUSH and POP instructions. (a) PUSH BX places the contents of BX
onto the stack, (b) POP CX removes data from the stack and places them into CX. Both
instructions are shown after execution. ‘

Whenever data are popped from the stack [see Figure 3-17(b)], the low-order 8 bits are removed from the
location addressed by SP. The high-order 8 bits are removed from the location addressed by SP + 1. The SP register
is then incremented by 2. Table 3—11 lists some of the PUSH and POP instructions available to the MiCroprocessor.
Note that PUSH and POP always store or retrieve words of data—never bytes—in the 8086 through the 80286
microprocessors. The 80386 and above allow words or doublewords to be transferred to and from the stack. Data
may be pushed onto the stack from any 16-bit register or segment register; in the 80386 and above, from any 32-bit
extended register. Data may be popped off the stack into any 16-bit register or any segment register except CS. The
reason that data may not be popped from the stack into CS is that this only changes part of the address of the next
instruction.

3-4 SUMMARY

81

TABLE 3-11 Example PUSH and POP instructions.
Assembly Language Operation
POPF Removes a word from the stack and places it into the flags
PUSHF Copies the flags onto the stack
PUSH AX Copies AX to the stack
POP BX Removes a word from the stack and places it into BX
PUSH DS Copies DS to the stack
PUSH 1234H Copies a 1234H to the stack
POPCS . lllegal instruction
PUSH WORD PTR [BX] Copies a word from the data segment memory location addressed
by BX onto the stack
PUSH EDI Copies EDI to the stack

The PUSHA and POPA instructions either push or pop all of the registers, except the segment registers, on
the stack. These instructions are not available on the early 8086/8088 microprocessors. The push immediate
instruction is also new to the 80286 through the Pentium microprocessors. Note the examples in Table 3-11, which
show the order of the registers transferred by the PUSHA and POPA instructions. The 80386 and above also allow
extended registers to be pushed or popped.
Example 3-14 lists a short program that pushes the contents of AX, BX, and CX onto the stack. The first POP
retrieves the value that was pushed onto the stack from CX and places it into AX. The second POP places the orig-
inal value of BX into CX. The last POP places the original value of AX into BX.

EXAMPLE 3-14
.MODEL TINY ;select TINY model
0000 .CODE ;start CODE segment
.STARTUP ;start of program
0100 B8 1000 MOV AX,1000H ;load test data
0103 BB 2000 MOV BX,2000H
0106 B9 3000 MOV CX,3000H
0109 50 PUSH AX ;1000H to stack
010A 53 PUSH BX ;2000H to stack
010B 51 PUSH cxX ;3000H to stack
010C 58 POP AX ;3000H to AX
010D 59 POP CxX ;2000H to CX
010E 5B POP BX ;1000H to BX
.EXIT ;exit to DOS
END ;end of file
3-4 SUMMARY

1. The data-addressing modes include register, immediate, direct, register indirect, base-plus-index, register rela-
tive, and base relative-plus-index addressing. In the 80386 through the Pentium 4 microprocessors, an additional
addressing mode, called scaled-index addressing, exists.

2. The program memory-addressing modes include direct, relative, and indirect addressing.

82 CHAPTER 3 ADDRESSING MODES

3. Table 3-12 lists all real mode data-addressing modes available to the 8086 through the 80286 microproces-
sors. Note that the 80386 and above use these modes, plus the many defined through this chapter. In the pro-
tected mode, the function of the segment register is to address a descriptor that contains the base address of the
memory segment.

4. The 80386 through Pentium 4 microprocessors have additional addressing modes that allow the extended
registers EAX, EBX, ECX, EDX, EBP, EDI, and ESI to address memory. Although these addressing modes

TABLE 3-12 Example real mode data-addressing modes.

Assembly Language Address Generation
MOV AL,BL 8-bit register addressing
MOV AX,BX 16-bit register addressing
MOV DS,CX Segment register addressing
MOV ALLIST . (DS x 10H) + LIST
MOV CH,DATA1 (DS x 10H) + DATAT1
MOV ES,DATA2 (DS x 10H) + DATA2
MOV AL,12 Immediate data of 12H
MOV AL,[BP] (SS x 10H) + BP
MOV AL,[BX] {DS x 10H) + BX
MOV AL,[Di] (DS x 10H) + DI
MOV AL,[SI] (DS x 10H) + SI
MOV AL,[BP+2] (SSx 10H) + BP + 2
MOV AL,[BX-4] (DS x 10H) + BX - 4

MOV AL,[Di+1000H]
MOV AL,[SI+300H]

(DS x 10H) + DI + 1000H
(DS x 10H) + SI + 300H

MOV AL,LIST[BP] (SS x 10H) + LIST + BP
MOV AL,LIST[BX] (DS x 10H) + LIST + BX

MOV AL,LIST[DI] (DS x 10H) + LIST + DI

MOV AL,LIST[SI] (DS x 10H) + LIST + S|

MOV AL,LIST[BP+2)] (SS x 10H) + LIST + BP + 2
MOV AL,LIST[BX~6] (DS x 10H) + LIST + BX - 6
MOV AL, LIST[DI+100H] (DS x 10H) + LIST + DI + 100H
MOV AL,LIST[SI+200H] (DS x 10H) + LIST + SI + 200H
MOV AL,[BP-+DI] (SS x 10H) + BP + DI

MOV AL,[BP+SI] (SS x 10H) + BP + SI

MOV AL,[BX+DI] (DS x 10H) + BX + DI

MOV AL,[BX+SI] (DS x 10H) + BX + Sl

MOV AL,[BP+DI+4] (SS x 10H) + BP + DI +4

MOV AL,[BP+SI-8)] (SS x 10H) + BP + SI—-8

MOV AL,[BX+DI+10H]
MOV AL,[BX+ SI-10H]

(DS x 10H) + BX + DI + 10H
(DS x 10H) + BX + Sl — 10H

MOV AL,LIST[BP+DI] (SS x 10H) + LIST + BP + DI
MOV AL,LIST[BP+SI] (SS x 10H) + LIST + BP + SI
MOV AL,LIST[BX+Dl] (DS x 10H) + LIST + BX + DI
MOV AL,LIST[BX+SI] (DS x 10H) + LIST + BX + Sl
MOV AL,LIST[BP+DI+2] (SSx 10H) + LIST+BP + DI + 2
MOV AL,LIST[BP+SI-7] (SSx 10H) + LIST +BP + SI -7
MOV AL,LIST[BX+DI1+3] (DS x 10H) + LIST+BX + DI +3

MOV AL,LIST[BX+SI-2]

(DS x 10H) + LIST + BX + Sl -2

3-4

10.

12.

13.

14.

15.

16.

SUMMARY 83

are too numerous to list in tabular form, in general, any of these registers function in the same way as those
listed in Table 3-12. For example, the MOV AL,TABLE[EBX+2*ECX+10H] is a valid addressing mode for
the 80386—Pentium 4 microprocessors.

- The MOV instruction copies the contents of the source operand into the destination operand. The source never

changes for any instruction.

Register addressing specifies any 8-bit register (AH, AL, BH, BL, CH, CL, DH, or DL) or any 16-bit
register (AX, BX, CX, DX, SP, BP, SI, or DI). The segment registers (CS, DS, ES, or SS) are also ad-
dressable for moving data between a-segment register and a 16-bit register/memory location or for
PUSH and POP. In the 80386 through the Pentium 4 microprocessors, the extended registers also are
used for register addressing; they consist of EAX, EBX, ECX, EDX, ESP, EBP, EDI, and ESI. Also
available to the 80386 and above are the FS and GS segment registers.

The MOV immediate instruction transfers the byte or word that immediately follows the opcode into a
register or a memory location. Immediate addressing manipulates constant data in a program. In the
80386 and above, a doubleword immediate data may also be loaded into a 32-bit register or memory
location.

. The .MODEL statement is used with assembly language to identify the start of a file and the type of

memory model used with the file. If the size is TINY, the program exists in one segment, the code seg-
ment, and is assembled as a command (.COM) program. If the SMALL model is used, the program
uses a code and data segment, and assembles as an execute (.EXE) program. Other model sizes and
their attributes are listed in Appendix A.

Direct addressing occurs in two forms in the microprocessor: (1) direct addressing and (2) displace-
ment addressing. Both forms of addressing are identical except that direct addressing is used to
transfer data between EAX, AX, or AL and memory; displacement addressing is used with any reg-
ister-memory transfer. Direct addressing requires three bytes of memory, while displacement ad-
dressing requires four bytes. Note that some of these instructions in the 80386 and above may require
additional bytes in the form of prefixes for register and operand sizes.

Register indirect addressing allows data to be addressed at the memory location pointed to by either a
base (BP and BX) or index register (DI and SI). In the 80386 and above, extended registers EAX,
EBX, ECX, EDX, EBP, EDI, and ESI are used to address memory data.

. Base-plus-index addressing often addresses data in an array. The memory address for this mode is

formed by adding a base register, index register, and the contents of a segment register times 10H. In
the 80386 and above, the base and index registers may be any 32-bit register except EIP and ESP.
Register relative addressing uses either a base or index register, plus a displacement to access memory
data.

Base relative-plus-index addressing is useful for addressing a two-dimensional memory array. The ad-
dress is formed by adding a base register, an index register, displacement, and the contents of a seg-
ment register times 10H. 4

Scaled-index addressing is unique to the 80386 through the Pentium 4. The second of two registers
(index) is scaled by a factor of 2X, 4X, or 8X to access words, doublewords, or quadwords in memory
arrays. The MOV AX,[EBX+2*ECX] and the MOV [4*ECX],EDX are examples of scaled-index in-
structions.

Data structures are templates for storing arrays of data, and are addressed by array name and field. For
example, array NUMBER and field TEN of array NUMBER is addressed as NUMBER.TEN.

Direct program memory addressing is allowed with the JMP and CALL instructions to any location in
the memory system. With this addressing mode, the offset address and segment address are stored with
the instruction.

. Relative program addressing allows a JMP or CALL instruction to branch forward or backward in the

current code segment by +32K bytes. In the 80386 and above, the 32-bit displacement allows a branch
to any location in the current code segment by using a displacement value of +2G bytes. The 32-bit dis-
placement can be used only in protected mode.

84 CHAPTER 3 ADDRESSING MODES

18. Indirect program addressing allows the JMP or CALL instructions to address another portion of
the program or subroutine indirectly through a register or memory location.

19. The PUSH and POP instructions transfer a word between the stack and a register or memory loca-
tion. A PUSH immediate instruction is available to place immediate data on the stack. The
PUSHA and POPA instructions transfer AX, CX, DX, BX, BP, SP, SI, and DI between the stack
and these
registers. In the 80386 and above, the extended register and extended flags can also be transferred
between registers and the stack. A PUSHFD stores the EFLAGS, while a PUSHF stores the
FLAGS.

20. Example 3-15 shows many of the addressing modes presented in the chapter. This example pro-
gram fills the ARRAY from locations 0000:0000-0000:0009. It then fills ARRAY2-0 through 9.
Finally, it exchanges the contents of ARRAY1 element 2 with ARRAY?2 element 3.

EXAMPLE 3-15

.MODEL SMALL ;select SMALL model
0000 .DATA ;start of DATA segment
0000 000A [ARRAY1 DB 10 DUP (?) ;reserve for ARRAY1

00
]
000Aa 000A [ARRAY2 DB 10 DUP (?) ;reserve for ARRAY2
00
]

0000 .CODE ;start of CODE segment

.STARTUP ;start of program
0017 B8 0000 MOV AX,0 ;segment ES is 0000H
001A 8E CO MOV ES,AX
001Cc BF 0000 MOV DI, O ;address element 0
001F B9 000A MOV CX,10 ;count of 10
0022 LABl:
0022 26:8A 05 MOV AL,ES: [DI] ;copy data
0025 88 85 0000 R MOV ARRAY1(DI],AL ;into ARRAY1
0029 47 INC DI
002A E2 F6 LOOP LAB1
002C BF 0000 MOV DI,0 ;address element 0
002F B9 000A MOV CX, 10 ;count of 10
0032 BO 00 MOV AL, O ;initial value
0034 LAB2:
0034 88 85 000A R MOV ARRAY2 [DI],AL ;£111 ARRAY2
0038 FE CO INC AL
003Aa 47 INC DI
003B E2 F7 LOOP LAB2
003D BF 0003 MOV DI,3 ;exchange array data
0040 8A 85 0000 R MOV AL,ARRAY1[DI]
0044 8A A5 000B R MOV AH,ARRAY2 [DI+1]
0048 88 A5 0000 R MOV ARRAY1[DI],AH
004C 88 85 000B R MOV ARRAY2 [DI+1],AL

LEXIT ;exit to DOS

END ;end of file

3-5 QUESSTIONS AND PROBLEMS 85

3-5 QUESTIONS AND PROBLEMS

1. What do the following MOV instructions accomplish?
(a) MOV AX,BX
(b) MOV BX,AX
(c) MOV BL,CH
(d) MOV ESP.EBP
(e) MOV AX,CS
2. List the 8-bit registers that are used for register addressing.
3. List the 16-bit registers that are used for register addressing.
List the 32-bit registers that are used for register addressing in the 80386 through the Pentium 4
MiCroprocessors.
. List the 16-bit segment registers used with register addressing by MOV, PUSH, and POP.
. What is wrong with the MOV BL,CX instruction?
. What is wrong with the MOV DS,SS instruction?
. Select an instruction for each of the following tasks:
(a) copy EBX into EDX
(b) copy BL into CL
(c) copy Slinto BX
(d) copy DS into AX
(e) copy AL into AH
9. Select an instruction for each of the following tasks:
(a) move a 12H into AL
(b) move a 123AH into AX
(c) move a O0CDH into CL
(d) move a 1000H into SI
(e) move a 1200A2H into EBX
10. What special symbol is sometimes used to denote immediate data?
I'1. What is the purpose of the MODEL TINY statement?
12. What assembly language directive indicates the start of the CODE segment?
13. What is a label?
14. The MOV instruction is placed in what field of a statement?
15. A label may begin with what characters?
16. What is the purpose of the .EXIT directive?
17. Does the MODEL TINY statement cause a program to assemble an execute program?
18. What tasks does the .STARTUP directive accomplish in the small memory model?
19. What is a displacement? How does it determine the memory address in a MOV [2000H],AL instruction?
20. What do the symbols [] indicate?
21. Suppose that DS = 0200H, BX = 0300H, and DI = 400H. Determine the memory address accessed by each
of the following instructions, assuming real mode operation:
(a) MOV AL,[1234H]
(b) MOV EAX,[BX]
(c) MOV [DI],AL
22. What is wrong with a MOV [BX]},[DI] instruction?
23. Choose an instruction that requires BYTE PTR.
24. Choose an instruction that requires WORD PTR.
25. Choose an instruction that requires DWORD PTR.
26. Explain the difference between the MOV BX,DATA instruction and the MOV BX,OFFSET DATA
instruction.

>

00 J N W

86

217.

28.
29.

30.

31

32.
33.

34.

35.
36.
37.

38.
39.

40.
41.
42.

43.

CHAPTER 3 ADDRESSING MODES

Suppose that DS = 1000H, SS = 2000H, BP = 1000H, and DI = 0100H. Determine the memory address ac-
cessed by each of the following instructions, assuming real mode operation:

(a) MOV AL,[BP+DI}

(b) MOV CX,[DI}

(¢) MOV EDX,[BP]

What, if anything, is wrong with a MOV AL,[BX][SI] instruction?

Suppose that DS = 1200H, BX = 0100H, and SI = 0250H. Determine the address accessed by each of the
following instructions, assuming real mode operation:

(a) MOV [100H],DL

(b) MOV [SI+100H],EAX

(¢) MOV DL,[BX+100H]

Suppose that DS = 1100H, BX = 0200H, LIST = 0250H, and SI = 0500H. Determine the address accessed by
each of the following instructions, assuming real mode operation:

(a) MOV LIST[SI],LEDX

(b) MOV CL,LIST[BX+SI]

(¢) MOV CH,[BX+SI]

Suppose that DS = 1300H, SS = 1400H, BP = 1500H, and SI = 0100H. Determine the address accessed by each
of the following instructions, assuming real mode operation:

(a) MOV EAX,[BP+200H]

(b) MOV AL,[BP+SI-200H]

(c) MOV AL,[SI-0100H]

Which base register addresses data in the stack segment?

Suppose that EAX = 00001000H, EBX = 00002000H, and DS = 0010H. Determine the addresses accessed by
the following instructions, assuming real mode operation:

(a) MOV ECX,[EAX+EBX]

(b) MOV [EAX+2*EBX],CL

(¢) MOV DH,[EBX+4*EAX+1000H]

Develop a data structure that has five fields of one word each named F1, F2, F3, F4, and F5 with a structure
name of FIELDS.

Show how field F3 of the data structure constructed in question 34 is addressed in a program.

What are the three program memory-addressing modes?

How many bytes of memory store a far direct jump instruction? What is stored in each of
the bytes?

What is the difference between an intersegment and intrasegment jump?

If a near jump uses a signed 16-bit displacement, how can it jump to any memory location within the current
code segment?

The 80386 and above use a -bit displacement to jump to any location within the 4G byte code segment.
What is a far jump?

If a JMP instruction is stored at memory location 100H within the current code segment, it cannot be a
jump if it is jumping to memory location 200H within the current code segment.

Show which JMP instruction assembles (short, near, or far) if the JMP THERE instruction is stored at
memory address 10000H and the address of THERE is:

(a) 10020H

(b) 11000H

(c) OFFFEH

(d) 30000H

. Form a JMP instruction that jumps to the address pointed to by the BX register.
45.

Select a JMP instruction that jumps to the location stored in memory at the location table. Assume thatitis a
near JMP.

3-5

46.
47.
48.
49.
50.

QUESTIONS AND PROBLEMS

How many bytes are stored on the stack by PUSH instructions?

Explain how the PUSH [DI] instruction functions.

What registers are placed on the stack by the PUSHA instruction? In what order?
What does the PUSHAD instruction accomplish?

Which instruction places the EFLAGS on the stack in the Pentium 4 microprocessor?

87

CHAPTER 4
Data Movement Instructions

INTRODUCTION

This chapter concentrates on the data movement instructions. The data movement instructions include MOV,
PUSH, POP, XCHG, XLAT, IN, OUT, LEA, LDS, LES, LAHF, SAHF, and the string instructions MOVS,
LODS, STOS. The latest data transfer instruction implemented on the Pentium Pro through Pentium 4 is the
CMOV (conditional move) instruction. The data movement instructions are presented first because they are more
commonly used in programs and easy to understand.

The microprocessor requires an assembler program, which generates machine language, because machine
language instructions are too complex to efficiently generate by hand. This chapter describes the assembly 1-
anguage syntax and some of its directives. [This text assumes that the user is developing software on an IBM
personal computer or clone. It is recommended that the Microsoft MACRO assembler (MASM) be used as the
development tool, but the Intel Assembler (ASM), Borland Turbo assembler (TASM), or similar software func-
tion equally as well. The most recent version of TASM completely emulates the MASM program. This text
presents information that functions with the Microsoft MASM assembler, but most programs assemble without
modification with other assemblers. Appendix A explains the Microsoft assembler and provides detail on the
linker program and Programmer’s WorkBench.] Those interested only in 8086 may ignore text in italics.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

1. Explain the operation of each data movement instruction with applicable addressing modes.

2. Explain the purposes of the assembly language pseudo-operations and key words such as ALIGN,
ASSUME, DB, DD, DW, END, ENDS, ENDP, EQU, .MODEL, OFFSET, ORG, PROC, PTR, SEGMENT.

3. Select the appropriate assembly language instruction to accomplish a specific data movement task.

4. Determine the symbolic opcode, source, destination, and addressing mode for a hexadecimal machine

language instruction.

Use the assembler to set up a data segment, stack segment, and code segment.

Show how to set up a procedure using PROC and ENDP.

7. Explain the difference between memory models and full-segment definitions for the MASM assembler.

oW

88

4-1 MOV REVISITED 89

4-1 MOV REVISITED

The MOV instruction, introduced in Chapter 3, explains the diversity of 8086—Pentium 4 addressing modes. In this
chapter, the MOV instruction introduces the machine language instructions available with various addressing
modes and instructions. Machine code is introduced because it may occasionally be necessary to interpret machine
language programs generated by an assembler. Interpretation of the machine’s native language (machine
language) allows debugging or modification at the machine language level. Occasionally, machine language
patches are made by using the DEBUG program available with DOS, which requires some knowledge of machine
language. Conversion between machine and assembly language instructions is illustrated in Appendix B.

Machine Language

Machine language is the native binary code that the microprocessor understands and uses as its instructions to
control its operation. Machine language instructions for the 8086 through the Pentium 4 vary in length from one to
as many as thirteen bytes. Although machine language appears complex, there is order to this microprocessor’s
machine language. There are well over 100,000 variations of machine language instructions, which means that
there is no complete list of these variations. Because of this, some binary bits in a machine language instruction are
given, and the remainder are determined for each variation of the instruction.

Instructions for the 8086 through the 80286 are 16-bit mode instructions that take the form found in
Figure 4-1(a). The 16-bit mode instructions are compatible with the 80386 and above if they are programmed
to operate in the 16-bit instruction mode, but they may be prefixed, as shown in Figure 4-1(b). The 80386 and
above assume that all instructions are 16-bit mode instructions when the machine is operated in the real mode.
In the protected mode, the upper byte of the descriptor contains the D-bit that selects either the 16- or 32-bit in-
struction mode. At present, only Windows XP, Windows 95, Windows 98, and OS/2 operate in the 32-bit in-
struction mode. The 32-bit mode instructions are in the form shown in Figure 4—1(b). These instructions occur
in the 16-bit instruction mode by the use of prefixes, which are explained later in this chapter.

The first two bytes of the 32-bit instruction mode format are called override prefixes because they are not
always present. The first modifies the size of the operand address used by the instruction and the second modifies
the register size. If the 80386 through the Pentium II operate as 16-bit instruction mode machines (real or protected
mode) and a 32-bit register is used, the register-size prefix (66H) is appended to the front of the instruction. If
operated in the 32-bit instruction mode (protected mode only) and a 32-bit register is used, the register-size prefix is
absent. If a 16-bit register appears in an instruction in the 32-bit instruction mode, the register-size prefix is present to
select a 16-bit register. The address size-prefix (67H) is used in a similar fashion, as explained later in this
chapter. The prefixes toggle the size of the register and operand address from 16-bit to 32-bit or from 32-bit to 16-
bit for the prefixed instruction. Note that the 16-bit instruction mode uses 8- and 16-bit registers and addressing

16-bit instruction mode

Opcode MOD-REG-R/M| | Displacement Immediate
1-2 bytes 01 bytes 0-1 bytes 0-2 bytes

(a)

32-bit instruction mode (80386 through Pentium 4 only)

! Address size : : Operand size :| Opcode MOD-REG-R/M| : Scaled-index : | Displacement| | Immediate
O-1bytes :: O-1bytes :| 1-2bytes 0-1bytes |i O-1bytes :| 0-4bytes 0-4 bytes

FIGURE 4-1 The formats of the 8086—Pentium 4 instructions. (a) The 16-bit form and (b) the 32-bit form.

90 CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

modes, while the 32-bit instruction mode uses 8- and 32-bit registers : R
and addressing modes by default. The prefixes override these de- DWW
faults so that a 32-bit register can be used in the 16-bit mode or a 16- ——
bit register can be used in the 32-bit mode. The mode of operation l

(16 or 32 bits) should be selected to conform with the application at ‘

hand. If 8- and 32-bit data pervade the application, the 32-bit mode

should be selected; likewise, if 8- and 16-bit data pervade, the 16-bit Opcode

mode should be selected. Normally, mode selection is a function of FIGURE 4-2 Byte 1 of many machine

the operating system. (Remember that DOS can operate only in the - language instructions, showing the
16-bit mode, however.) position of the D- and W-bits.

The Opcode. The opcode selects the operation (addition, subtraction, move, and so on) that is performed
by the microprocessor. The opcode is either one or two bytes long for most machine language instructions.
Figure 4-2 illustrates the general form of the first opcode byte of many, but not all, machine language in-
structions. Here, the first six bits of the first byte are the binary opcode. The remaining two bits indicate the
direction (D)-—not to be confused with the instruction mode bit (16/32) or direction flag bit (used with
string instructions)—of the data flow, and indicate whether the data are a byte or a word (W). In the 80386
and above, words and doublewords are both specified when W = 1. The instruction mode and register-size
prefix (66H) determine whether W represents a word or a doubleword.

If the direction bit (D) = 1, data flow to the register REG
field from the R/M field located in the second byte of an
instruction. If the D-bit = 0 in the opcode, data flow to the R/M MOD REG R/M
field from the REG field. If the W-bit = 1, the data size is a : - P
word or doubleword; if the W-bit = 0, the data size is always a
byte. The W-bit appears in most instructions, while the D-bit
appears mainly with the MOV and some other instructions. FIGURE 4-3 Byte 2 of many machine
Refer to Figure 4-3 for the binary bit pattern of the second op- |anguage instructions, showing the
code byte (reg-mod-r/m) of many instructions. Figure 4-3 position of the MOD, REG, and R/M
shows the location of the MOD (mode), REG (register), and fields.
R/M (register/memory) fields.

MOD Field. The MOD field specifies the addressing mode (MOD) for the selected instruction. The MOD
field selects the type of addressing and whether a displacement is present with the selected type. Table 4-1
lists the operand forms available to the MOD field for 16-bit instruction mode, unless the operand address-size
override prefix (67H) appears. If the MOD field contains an 11, it selects the register addressing mode. Reg-
ister addressing uses the R/M field to specify a register instead of a memory location. If the MOD field
contains a 00, 01, or 10, the R/M field selects one of the data memory-addressing modes. When MOD selects
a data memory addressing mode, it indicates that the addressing mode contains no displacement (00), an 8-bit
sign-extended displacement (01), or a 16-bit displacement (10). The MOV AL,[DI] instruction is an example
- that shows no displacement, a MOV AL,[DI+2] instruction uses an 8-bit displacement (+ 2), and a MOV
AL,[DI+1000H] instruction uses a 16-bit displacement (+ 1000H).

All 8-bit displacements are sign-extended into 16-bit displacements when the microprocessor exe-
cutes the instruction. If the 8-bit displacement is 00H-7FH (positive), it is sign-extended to 0000H-007FH
before adding to the offset address. If the 8-bit displacement is 80H-FFH (negative), it is sign-extended to
FF80H-FFFFH. To sign-extend a number, its sign-bit is copied to the next higher-order byte, which gener-
ates either a 00H or an FFH in the next higher-order byte. Some assembler programs do not use the 8-bit
displacements.

In the 80386 through the Pentium 4 microprocessors, the MOD field may be the same as shown in Table 4-1;
if the instruction mode is 32-bits, the MOD field is as it appears in Table 4-2. The MOD field is interpreted as
selected by the address-size override prefix or the operating mode of the microprocessor. This change in the

4-1 MOVE REVISITED . 91

TABLE 4-1 MOD field for the 16-bit TABLE 4-2 MOD field for the 32-bit
instruction mode. instruction mode (80386—Pentium 4 only).
MOD Function MOD Function

00 No displacement 00 No displacement

01 8-bit sign-extended displacement 01 8-bit sign-extended displacement

10 16-bit displacement 10 32-bit displacement

11 R/M is a register 11 R/M is a register

interpretation of the MOD field and instruction supports many of the numerous additional addressing modes allowed
in the 80386 through the Pentium 4. The main difference is that when the MOD field is a 10, this causes the 16-bit dis-
placement to become a 32-bit displacement to allow any protected mode memory location (4G bytes) to be accessed.
The 80386 and above only allow an 8- or 32-bit displacement when operated in the 32-bit instruction mode, unless
the address-size override prefix appears. Note that if an 8-bit displacement is selected, it is sign-extended into a 32-bit
displacement by the microprocessor.

Register Assignments. Table 4-3 TABLE 4-3 REG and R/M {when MOD = 11) assignments.
lists the register assignments for the
REG field and the R/M field (MOD = Code W = 0 (Byte) W =1 (Word) W = 1 (Doubleword)
11). This table contains three lists of

register assignments: one is used when 000 AL AX EAX
the W-bit = 0 (bytes), and the other two 001 CL CX ECX
are used when the W-bit = 1 (words or 010 DL DX EDX
doublewords). Note that doubleword 011 BL BX EBX
registers are only available to the 80386 100 AH SP ESP
-through the Pentium 4. 101 CH BP EBP
Suppose that a 2-byte instruction, 110 DH SI ESI
8BECH, appears in a machine language 111 BH DI EDI

program. Because neither a 67H
(operand address-size override prefix)
nor a 66H (register-size override prefix) appears as the first byte, the first byte is the opcode. If the microprocessor
is operated in the 16-bit instruction mode, this instruction is converted to binary and placed in the instruction
format of bytes 1 and 2, as illustrated in Figure 44. The opcode is 100010. If you refer to Appendix B, which lists
the machine language instructions, you will find that this is the opcode for a MOV instruction. Notice that both the
D and W bits are a logic 1, which means that a word moves into the destination register specified in the REG field.
The REG field contains a 101, indicating register BP, so the MOV instruction moves data into register BP.

Opcode D W MOD REG R/M

1:0i0i0i1io0] 1] 1Pl 1ioit]1i0i0

Opcode = MOV

D = Transfer to register (REG)
W = Word

MOD = R/M is a register

REG =BP

R/M = SP

FIGURE 4-4 The 8BEC instruction placed into Byte 1 and 2 formats from Figures 4-2 and
4-3. This instruction is a MOV BP,SP.

92 CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

Because the MOD field contains a 11, the R/M field also indicates a register. Here, R/M = 100 (SP); therefore, this
instruction moves data from SP into BP and is written in symbolic form as a MOV BP.SP instruction.

Suppose that a 668BE8H instruction appears in an 80386 or above, operated in the 16-bit instruction mode.
The first byte (66H) is the register-size override prefix that selects 32-bit register operands for the 16-bit
instruction mode. The remainder of the instruction indicates that the opcode is a MOV with a source operand of
EAX and a destination operand of EBP. This instruction is a MOV EBP,EAX. The same instruction becomes a
MOV BP,AX instruction in the 80386 and above if it is operated in the 32-bit instruction mode because the
register-size override prefix selects a 16-bit register. Luckily, the assembler program keeps track of the register-
and address-size prefixes and the mode of operation. Recall that if the .386 switch is placed before the MODEL
statement, the 32-bit mode is selected; if it is placed after the MODEL statement, the 16-bit mode is selected.

R/M Memory Addressing. 1f the MOD field contains a 00, 01, or 10, the R/M field takes on a new meaning. Table

44 lists the memory-addressing modes for the R/M field when MOD is a 00, 01, or 10 for the 16-bit instruction mode.
All of the 16-bit addressing modes presented in Chapter 3 appear in Table 4-4. The displacement, discussed

in Chapter 3, is defined by the MOD field. If MOD = 00 and R/M = 101, the addressing mode is [DI]. If MOD =

01 or 10, the addressing mode is [DI+33H], or LIST [DI+22H] for the 16-

bit instruction mode. This example uses LIST, 33H, and 22H as arbitrary TABLE 4-4 16-bit R/M

values for the displacement. memory-addressing modes.
Figure 4-5 illustrates the machine language version of the 16-bit

instruction MOV DL,[DI] or instruction (8A15H). This instruction is two R/M Code Addressing Mode

bytes long and has an opcode 100010, D =1 (to REG from R'M), W =0

(byte), MOD = 00 (no displacement), REG = 010 (DL), and R'M = 101 000 DS:[BX+Sl]
([DI)). If the instruction changes to MOV DL,[DI+1], the MOD field 001 DS:[BX+Dl}
changes to 01 for an 8-bit displacement, but the first two bytes of the 010 SS:[BP+Sl]
instruction otherwise remain the same. The instruction now becomes 011 SS:{BP+DI]
8A5501H instead of 8A15H. Notice that the 8-bit displacement appends to 100 DS:[S1]

the first two bytes of the instruction to form a three-byte instruction instead 101 DS:[DI]

of two bytes. If the instruction is again changed to a MOV DL,[DI+1000H], 110 SS:(BP)*
the machine language form becomes a 8A750010H. Here, the 16-bit dis- 111 DS:[BX]

placement of 1000H (coded as 0010H) appends the opcode.] .
*Note: See text section, Special

Special Addressing Mode. There is a special addressing mode that does Addressing Mode.
not appear in Tables 4-2, 4-3, or 4-4. It occurs whenever memory data are
referenced by only the displacement mode of addressing for 16-bit instruc-
tions. Examples are the MOV [1000H],DL and MOV NUMB, DL instructions. The first instruction moves the con-
tents of register DL into data segment memory location 1000H. The second instruction moves register DL into
symbolic data segment memory location NUMB.

Whenever an instruction has only a displacement, the MOD field is always a 00 and the R/M field is always
a 110. As shown in the tables, the instruction contains no displacement and uses addressing mode [BP]. You

Opcode D W MOD REG R/M
1iofoioitiol1|o oiofloitiof|1io0i1
Opcode = MOV
D = Transfer to register (REG)
W= Byte
MOD = No displacement
REG=DL
R/M = DS:[DI]

FIGURE 4-5 A MOV DL,[DI] instruction converted to its machine language form.

4-1 MOVE REVISITED 93

Opcode D wW MOD REG RM
1i0io0io0it1ioflofo oioloit1iol1i1io0
Byte 1 Byte 2
Displacement—low Displacement—high
0io0ioioioioioo o:o0ioitioioioio
Byte 3 Byte 4

Opcode = MOV

D = Transfer from register (REG)

W = Byte

MOD = because R/M is [BP] (special addressing)
REG =DL

R/M = DS:(BP]

Displacement = 1000H

FIGURE 4-6 The MOV [1000H],DL instruction uses the special addressing mode.

cannot actually use addressing mode [BP] without a displacement in machine language. The assembler takes care
of this by using an 8-bit displacement (MOD = 01) of 00H whenever the [BP] addressing mode appears in an in-
struction. This means that the [BP] addressing mode assembles as a [BP+0], even though a [BP] is used in the in-
. struction. The same special addressing mode is also available to the 32-bit mode.

Figure 4-6 shows the binary bit pattern required to encode the MOV [1000H],DL instruction in machine
language. If the individual translating this symbolic instruction into machine language does not know about the
special addressing mode, the instruction would incorrectly translate to a MOV [BP],DL instruction. Figure 4-7
shows the actual form of the MOV [BP],DL instruction. Notice that this is a three-byte instruction with a dis-
placement of 00H.

32-bit Addressing Modes. The 32-bit addressing modes found in the 80386 and above are obtained by either run-
ning these machines in the 32-bit instruction mode or in the 16-

bit instruction mode by using the address-size prefix 67H. Table TABLE 4-5 32-bit addressing modes se-
4-5 shows the coding for R/M used to specify the 32-bit ad- lected by R/M.

dressing modes. Notice that when R/M = 100, an additional

byte appears in the instruction called a scaled-index byte. The R/M Code Function
scaled-index byte indicates the additional forms of scaled-index

addressing that do not appear in Table 4-5. The scaled-index 000 DS:[EAX]

byte is mainly used when two registers are added to specify the ~ 001 DS:[ECX|

memory address in an instruction. Because the scaled-index 010 DS:[EDX]

byte is added to the instruction, there are seven bits in the op- on DS:[EBX] .

code and eight bits in the scaled-index byte to define. This 100 Us?s scal*ed-lndex byte
means that a scaled-index instruction has 2'* (32K) possible :?(1) gz%&gﬁ]
combinations. There are over 32,000 different variations of the 111 D S;[EDI]

MOV instruction alone in the 80386 through the Pentium 4 mi-
CIOprocessors.

Figure 4-8 shows the format of the scaled-index byte, as
selected by a value of 100 in the R/M field of an instruction when

*Note: See text section, Special Addressing Mode.

94 CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

Opcode D W MOD REG RM

8-bit displacement

0;0:0:0i0:0i0:0

Byte 3

Opcode = MOV

D = Transfer from register (REG)

W = Byte

MOD = because R/M is [BP] (special addressing)
REG =DL

R/M = DS:[BP]

Displacement = 00H

Byte 2

FIGURE 4-7 The MOV [BP],DL instruction converted to binary machine language.

the 80386 and above use a 32-bit address. The leftmost two bits select a scaling factor (multiplier) of 1X, 2X, 4X, or
8X. Note that a scaling factor of 1X is implicit if none is used in an instruction that contains two 32-bit indirect ad-
dress registers. The index and base fields both contain register numbers, as indicated in Table 4-3 for 32-bit registers.

The instruction MOV EAX,[EBX+4*ECX] is encoded as
67668B048BH. Notice that both the address size (67H) and register
size (66H) override prefixes appear in the instruction. This coding
(67668B048BH) is used when the 80386 and above microprocessors
are operated in the 16-bit instruction mode for this instruction. If the
microprocessor operates in the 32-bit instruction mode, both prefixes
disappear and the instruction becomes an 8B048BH instruction. The
use of the prefixes depends on the mode of operation of the micro-
processor. Scaled-index addressing can also use a single register mul-
tiplied by a scaling factor. An example is the MOV AL,[2*ECX]
instruction. The contents of the data segment location addressed by
two times ECX is copied into AL.

An Immediate Instruction. Suppose that the MOV WORD PTR

s s Index Base
sS
00= x1
0t=x2
10= x4
11=x8

FIGURE 4-8 The scaled-index byte.

[BX+1000H],1234H instruction is chosen as an example of a 16-bit instruction using immediate addressing. This
instruction moves a 1234H into the word-sized memory location addressed by the sum of 1000H, BX, and DS x
10H. This six-byte instruction uses two bytes for the opcode, W, MOD, and R/'M fields. Two of the six bytes are
the data of 1234H; two of the six bytes are the displacement of 1000H. Figure 4-9 shows the binary bit pattern for

each byte of this instruction.

This instruction, in symbolic form, includes WORD PTR. The WORD PTR directive indicates to the as-
sembler that the instruction uses a word-sized memory pointer. If the instruction moves a byte of immediate data,
BYTE PTR replaces WORD PTR in the instruction. Likewise, if the instruction uses a doubleword of immediate
data, the DWORD PTR directive replaces BYTE PTR. Most instructions that refer to memory through a pointer do
not need the BYTE PTR, WORD PTR, or DWORD PTR directives. These directives are necessary only when it is

4-1 MOVE REVISITED 95

Opcode w MOD RM
1i1i0i0i0i1:1]1 1io0floioiof1i1iq
Byte 1 Byte 2
Displacement—Ilow Displacement—high
0i0i0.0i0 0i0i0 0oio0foitioioioio
Byte 3 Byte 4
Data—low Data—high
0ioitit1ioitioio oioioit1ioioit1io
Byte 5 Byte 6

Opcode = MOV (immediate)

W = Word

MOD = 16-bit displacement

REG = 000 (not used in immediate addressing)
R/M = DS:[BX]

Displacement = 1000H

Data = 1234H

FIGURE 4-9 A MOV WORD PTR [BX+1000H],1234H instruction converted to binary ma-
chine language.

not clear whether the operation is a byte or a word. The MOV [BX],AL instruction is clearly a byte move; the
MOV [BX],! instruction is not exact, and could therefore be a byte-, word-, or doubleword-sized move. Here, the
instruction must be coded as MOV BYTE PTR [BX],1, MOV WORD PTR [BX],1, or MOV DWORD PTR
{BX],1. If not, the assembler flags it as an error because it cannot determine the intent of this instruction.

Segment MOV Instructions. 1f the contents of a segment register are moved by the MOV, PUSH, or POP in-
structions, a special set of register bits (REG field) selects the segment register (see Table 4-6).

Figure 4-10 shows a MOV BX,CS instruction converted to binary. The opcode for this type of MOV instruc-
tion is different for the prior MOV instructions. Segment registers can be moved between any 16-bit register or 16-bit
memory location. For example, the MOV [DI],DS instruction stores the contents of DS into the memory location ad-
dressed by DI in the data segment. An immediate segment register MOV is not available in the instruction set. To
load a segment register with immediate data, first load another register with the data and then move it to a segment
register.

Although this discussion has not been a complete coverage of machine language coding, it should give you
a good start in machine language programming. Remember a program written in symbolic assembly language (as-
sembly language) is rarely assembled by hand into binary machine language. An assembler program converts
symbolic assembly language into machine language. With the microprocessor and its over 100,000 instruction
variations, let us hope that an assembler is available for the conversion because the process is very time-con-
suming, although not impossible.

96 CHAPTER4 DATA MOVEMENT INSTRUCTIONS

TABLE 4-6 Segment register selection.

Code Segment Register
000 ES
001 cs*
010 SS
011 DS
100 FS
101 GS

*Note: MOV CS,R/M(16) and POP CS are not allowed by the
microprocessor. The FS and GS segments are only available
to the 80386—Pentium 4 microprocessors.

Opcode MOD REG R/M
1 0 0:0 1 1 0 0 1 1 0 0 1 0 1 1
Opcode = MOV
MOD = R/M is a register
REG =CS
R/M = BX

FIGURE 4-10 A MOV BX,CS instruction converted to binary machine language.

4-2 PUSH/POP

The PUSH and POP instructions are important instructions that store and retrieve data from the LIFO (last-in,
first-out) stack memory. The microprocessor has six forms of the PUSH and POP instructions: register, memory,
immediate, segment register, flags, and all registers. The PUSH and POP immediate and the PUSHA and POPA
(all registers) forms are not available in the earlier 8086/8088 microprocessors, but are available to the 80286
through the Pentium 4.

Register addressing allows the contents of any 16-bit register to be transferred to or from the stack. In the
80386 and above, the 32-bit extended registers and flags (EFLAGS) can also be pushed or popped from the stack.
Memory addressing PUSH and POP instructions store the contents of a 16-bit memory location (or 32-bits in the
80386 and above) on the stack or stack data into a memory location. Inmediate addressing allows immediate data
to be pushed onto the stack, but not popped off the stack. Segment register addressing allows the contents of any
segment register to be pushed onto the stack or removed from the stack (CS may be pushed, but data from the stack
may never be popped into CS). The flags may be pushed or popped from that stack, and the contents of all the reg-
isters may be pushed or popped.

Push

The 8086—80286 PUSH instruction always transfers two bytes of data to the stack; the 80386 and above transfer
two or four bytes, depending on the register or size of the memory location. The source of the data may be any in-
ternal 16- or 32-bit register, immediate data, any segment register, or any two bytes of memory data. There is also

4-2 PUSH/POP 97

a PUSHA instruction that copies the contents of the internal register set, except the segment registers, to the stack.
The PUSHA (push all) instruction copies the registers to the stack in the following order: AX, CX, DX, BX, SP,
BP, SI, and DI. The value for SP that is pushed onto the stack is whatever it was before the PUSHA instruction ex-
ecutes. The PUSHF (push flags) instruction copies the contents of the flag register to the stack. The PUSHAD and
POPAD instructions push and pop the contents of the 32-bit regisster set found in the 80386 through the Pentium 4.

Whenever data are pushed onto the stack, the first (most-significant) data byte moves into the stack segment
memory location addressed by SP - 1. The second (least-significant) data byte moves into the stack segment
memory location addressed by SP — 2. After the data are stored by a PUSH, the contents of the SP register decre-
ment by 2. The same is true for a doubleword push, except that four bytes are moved to the stack memory (most-
significant byte first), after which the stack pointer decrements by 4. Figure 4—11 shows the operation of the PUSH
AX instruction. This instruction copies the contents of AX onto the stack where address SS:[SP - 1] = AH, SS:[SP
— 2] = AL, and afterwards SP = SP - 2.

The PUSHA instruction pushes all the internal 16-bit registers onto the stack, as illustrated in Figure 4-12.
This instruction requires 16 bytes of stack memory space to store all eight 16-bit registers. After all registers are
pushed, the contents of the SP register are decremented by 16. The PUSHA instruction is very useful when the
entire register set (microprocessor environment) of the 80286 and above must be saved during a task. The
PUSHAD instruction places the 32-bit register set on the stack in the 80386 through the Pentium 4. PUSHAD re-
quires 32 bytes of stack storage space.

The PUSH immediate data instruction has two differerit opcodes, but in both cases, a 16-bit immediate
number moves onto the stack; if PUSHD is used, a 32-bit imrnediate datum is pushed. If the value of the imme-
diate data are 00H-FFH, the opcode is a 6AH; if the data are 0 100H-FFFFH, the opcode is 68H. The PUSH 8 in-

Stack segment

12FFF
L
f
03800
r\ 6 A 037FF
EAX 6 AB3 6 AB 3
j/ B 3 037FE ~—
e e
T N ———
ESP 07FE
M\/d_——f
cs 03000
DS O7FE
Y
ss| 0300 [.q)
3000 37FE
"\/\

FIGURE 4-11 The effect of the PUSH AX instruction on ESP and stack memory location
37FFH and 37FEH. This instruction is shown at the point after execution.

98 CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

struction, which pushes a 0008H onto the stack, assembles as a
6A08H. The PUSH 1000H instruction assembles as 680010H.

-<+— 16-bits —»

Another example of PUSH immediate is the PUSH ‘A’ instruc- AX
tion, which pushes a 0041H onto the stack. Here, the 41H is the CX
ASCIH code for the letter A.

Table 4-7 lists the forms of the PUSH instruction that DX

include PUSHA and PUSHF. Notice how the instruction set is

used to specify different data sizes with the assembler. BX
SP
Pﬂp
BP
The POP instruction performs the inverse operation of a PUSH
instruction. The POP instruction removes data from the stack S|
and places it into the target 16-bit register, segment register, or a
16-bit memory location. In the 80386 and above, a POP can also ~ SP after PUSHA ————» DI

remove 32-bit data from the stack and use a 32-bit address. The
POP instruction is not available as an immediate POP. The
POPF (pop flags) instruction removes a 16-bit number from the

stack and places it into the flag register; the POPFD removes a L/_/_J
32-bit number from the stack and places it into the extended flag

register. The POPA (pop all) instruction removes 16 bytes of FIGURE 4-12 The operation of the

data from the stack and places it into the following registers, in PUSHA instruction, showing the location

the order shown: DI, SI, BP, SP, BX, DX, CX, and AX. Thisis and order of stack data.

the reverse order from the way they were placed on the stack by

the PUSHA instruction, causing the same data to return to the same registers. In the 80386 and above, a POPAD
instruction reloads the 32-bit registers from the stack.

Suppose that a POP BX instruction executes. The first byte of data removed from the stack (the memory
location addressed by SP in the stack segment) moves into register BL. The second byte is removed from stack
segment memory location SP + 1 and is placed into register BH. After both bytes are removed from the stack, the
SP register increments by 2. Figure 4-13 shows how the POP BX instruction removes data from the stack and
places them into register BX.

The opcodes used for the POP instruction and all of its variations appear in Table 4-8. Note that a POP CS
instruction is not a valid instruction in the instruction set. If a POP CS instruction executes, only a portion of the

TABLE 4-7 The PUSH instructions.

Symbolic Example Note
PUSH reg16 PUSH BX 16-bit register
PUSH reg32 PUSH EDX 32-bit register
PUSH mem16 PUSH WORD PTR [BX] "16-bit pointer
PUSH mem32 PUSH DWORD PTR [EBX] 32-bit pointer
PUSH seg PUSH DS Segment register
PUSH imm8 PUSH *; 8-bit immediate
PUSHW imm16 PUSHW 1000H 16-bit immediate
PUSHD imm32 PUSHD 20 32-bit immediate
PUSHA PUSHA Save all 16-bit registers
PUSHAD PUSHAD Save all 32-bit registers
PUSHF PUSHF Save flags

PUSHFD PUSHFD Save EFLAGs

4-2 PUSH/POP 99

Stack segment

OFFFF
V—I_A
e~)
EAX 01008 --—
/1________.—-——'—'—'_ 39 01007
EBX 392F N 392F 2 F 01006
—\/'
ESP 1008 r/—\/

cs
DS 1008 00000
Y
SS 0000 ———»@
00000 1008
"\—_——\/

FIGURE 4-13 The POP BX instruction, showing how data are removed from the stack. This
instruction is shown after execution.

TABLE 4-8 The POP instructions.

Symbolic Example Note
POP reg16 POP CX 16-bit register
POP reg32 POP EBP 32-bit register
POP mem16 POP WORD PTR[BX+1] 16-bit pointer
POP mem32 POP DATA3 32-bit memory address
POP seg POP FS Segment register
POPA POPA Pop all 16-bit registers
POPAD POPAD Pop all 32-bit registers
POPF POPF Pop flags
POPFD POPFD Pop EFLAGs

address (CS) of the next instruction changes. This makes the POP CS instruction unpredictable and therefore not
allowed.

Initializing the Stack

When the stack area is initialized, load both the stack segment (SS) register and the stack pointer (SP) register. It
is normal to designate an area of memory as the stack segment by loading SS with the bottom location of the stack
segment.

For example, if the stack segment is to reside in memory locations 10000H-1FFFFH, load SS with a
1000H. (Recall that the rightmost end of the stack segment register is appended with a OH for real mode ad-
dressing.) To start the stack at the top of this 64K-byte stack segment, the stack pointer (SP) is loaded with a

100 CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

EAX
EBX Stack segment i
ECX A037 A037 \

1FFFE
ESP 0000

cs L/\/\-
]

DS 0000

ss 1000 ——'QS
10000

10000

10000 «+—

FIGURE 4-14 The PUSH CX instruction, showing the cyclical nature of the stack segment.
- This instruction is shown just before execution, to illustrate that the stack bottom is con-
tiguous to the top.

0000H. Likewise, to address the top of the stack at location 10FFFH, use a value of 1000H in SP. Figure 4-14
shows how this value causes data to be pushed onto the top of the stack segment with a PUSH CX instruction.
Remember that all segments are cyclic in nature—that is, the top location of a segment is contiguous with the
bottom location of the segment.

In assembly language, a stack segment is set up as illustrated in Example 4-1. The first statement identifies
the start of the stack segment and the last statement identifies the end of the stack segment. The assembler and
linker programs place the correct stack segment address in SS and the length of the segment (top of the stack) into
SP. There is no need to load these registers in your program unless you wish to change the initial values for some
reason.

EXAMPLE 4-1
0000 STACK_SEG SEGMENT STACK
0000 0100(DW 100H DUP (?)
222?
]
0200 STACK_SEG ENDS

An alternative method for defining the stack segment is used with one of the memory models for the MASM
assembler only (refer to Appendix A). Other assemblers do not use models; if they do, the models are not exactly the
same as with MASM. Here, the .STACK statement, followed by the number of bytes allocated to the stack, defines
the stack area (see Example 4-2). The function is identical to Example 4-1. The .STACK statement also initializes
both SS and SP. Note that this text uses memory models that are designed for the Microsoft Macro Assembler
program MASM. '

